Supporting Information

Synthesis and structures of *bis*-ligated zinc complexes supported by tridentate ketoimines that initiate L-lactide polymerization

Kimberly A. Gerling^a, Nomaan M. Rezayee^a, Arnold L. Rheingold^b, David B. Green^a, Joseph M. Fritsch^{*a}

^aDepartment of Chemistry, Pepperdine University ^bDepartment of Chemistry, University of California, San Diego

Table of contents

SI Figures 1-8. ¹ H, ¹³ C, and ¹⁹ F NMR spectra of compounds 1 - 8	SI-2
SI Figure 9. Variable temperature ¹ H NMR spectra of 8	SI-16
SI Figure 10. van't Hoff plot for 8	SI-16
SI Tables 1 and 2. Crystallographic and refinement data for 1-3 and 5-8.	SI-17-18
SI Figures 11 - 14. ORTEPs of compounds 2, 5, 6, and 8	SI-19-20
SI Table 3. Polylactides isolated from the ROP of L-lactide in bulk melt	SI-21
SI Figures 15 - 16. ¹ H and ¹ H{ ¹ H} NMR spectra of PLA isolated from polymerization with 1 .	SI-21-22
SI Figure 17 - 18. PLA M_n versus percentage conversion	SI-23
SI Figure 19 - 20. GPC-ELSD chromatograms of PLA isolated from double feed	SI-24
SI Figures 21-23 ¹ H and ¹⁹ F NMR spectra of <i>in situ</i> zinc alkoxide	SI-25-26

SI Figure 1. NMR spectra of compound 1.

SI Figure 2. NMR spectra of compound **2**.

SI Figure 3. NMR spectra of compound **3**.

SI Figure 4. NMR spectra of compound 4.

-10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 Chemical Shift (ppm) SI Figure 5. NMR spectra of compound 5.

SI Figure 6. NMR spectra of compound **6**.

SI Figure 7. NMR spectra of compound 7.

SI Figure 8. NMR spectra of compound 8.

SI Fig. 9 VT ¹H NMR spectra of 8 in the temperature range of 213 to 300 K in CD₂Cl₂.

SI Fig 10. van't Hoff plot for **8** with varying temperature from 213 to 300K where a = 8 and b = 8'.

Crystallographic Data and ORTEP Diagrams

	1	2•4CH₂Cl₂^a	3	5•Et ₂ O
Formula	$C_{30}H_{30}N_4O_2$ Zn	$C_{54}H_{46}Cl_8N_4O_2Zn$	$C_{28}H_{20}F_6N_4O_2$ Zn	$C_{34}H_{32}F_6N_4O_2$ Zn
FW	543.95	1131.92	623.85	708.01
T(K)	100	100	100	100
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space group	$P2_1/n$	C2/c	Cc	$P2_1/n$
<i>a</i> / Å	12.3863(9)	18.4261(19)	10.9999(5)	13.728(2)
<i>b</i> / Å	11.7173(8)	18.3114(19)	21.1507(11)	15.472(2)
<i>c</i> / Å	17.9207(13)	17.7719(19)	12.5158(5)	15.449(2)
α / °	90	90	90	90
β / °	95.189(3)	105.912(1)	112.964(1)	103.124(2)
γ/°	90	90	90	90
$V/Å^3$)	2590.2(3)	5766.6(1)	2681.1(2)	2642.2(3)
Ζ	4	4	4	4
D_c / g cm ⁻³	1.395	1.304	1.546	1.472
μ / mm ⁻¹	0.983	0.838	0.992	0.842
<i>F</i> (000)	1136	2320	1264	1456
Crystal color	yellow	orange	yellow	yellow
Ind. Ref.	7734	8315	4616	5445
Obs. Ref.	19876	38222	16741	22551
R _{int}	0.0457	0.1026	0.0274	0.0716
GOOF on F^2	1.056	1.053	1.071	1.050
$R_{I} [I > 2\sigma(I)]$	0.0499	0.0445	0.0273	0.0637
$wR_2 [I > 2\sigma(I)]$	0.1303	0.1246	0.0623	0.1469

SI Table 1. Crystallographic and refinement data for 1-3 and 5.

^a One more region of unit cell containing a solvent molecule could not be modeled or identified. This region was squeezed from final refinements.

	6	7	8	
Formula	$C_{44}H_{38}F_6N_4O_3Zn$	$C_{28}H_{14}F_{12}N_4O_2Zn$	$C_{30}H_{18}F_{12}N_4O_2Zn$	
FW	850.15	731.80	759.85	
T(K)	150	100	100	
Crystal system	Monoclinic	Monoclinic	Monoclinic	
Space group	$P2_1/n$	$P2_1/c$	$P2_1/n$	
<i>a</i> / Å	11.8222(6)	10.944(3)	10.8018(4)	
<i>b</i> / Å	14.4520(8)	15.110(4)	16.7358(7)	
<i>c</i> / Å	23.0665(13)	17.767(4)	16.7518(7)	
α / °	90	90	90	
β/°	93.491(1)	104.388(1)	103.113(1)	
γ/°	90	90	90	
\dot{V} / Å ³)	3933.7(4)	2846.0(1)	3699(2)	
Ζ	4	4	4	
D_c / g cm ⁻³	1.436	1.708	1.711	
μ / mm ⁻¹	0.699	0.977	0.946	
F(000)	1752	1456	1520	
Crystal color	yellow	orange	orange	
Ind. Ref.	7227	5767	21113	
Obs. Ref.	34376	21545	6007	
R _{int}	0.0429	0.0347	0.0279	
GOOF on F^2	1.005	1.020	1.006	
$R_{I} [I > 2\sigma(I)]$	0.0396	0.0272	0.0328	
$wR_2 [I > 2\sigma(I)]$	0.1052	0.0614	0.0848	

SI Table 2. Crystallographic and refinement data for 6-8.

ORTEP Diagrams

SI Figure 11. ORTEP of the molecular structure of **2** with thermal ellipsoids drawn at the 50% probability level. The hydrogen atoms and dichloromethane solvent molecules removed for clarity.

SI Figure 12. ORTEP of the molecular structure of **5** with thermal ellipsoids drawn at the 50% probability level. The hydrogen atoms are omitted for clarity.

SI Figure 13. ORTEP of the molecular structure of **6** with thermal ellipsoids drawn at the 50% probability level. The hydrogen atoms and one molecule of diethyl ether are omitted for clarity.

SI Figure 14. ORTEP of the molecular structure of **8** with thermal ellipsoids drawn at the 50% probability level. The hydrogen atoms are omitted for clarity.

Entry	Cmpd ^a	Phenol /	Time	Conv. ^b	$M_{n, calc}^{c}$	$M_{n, obs}^{d}$	PDI
-	-	Zn	(min)	(%)	$(10^3,$	$(10^3,$	(M_w/M_n)
					g/mol)	g/mol)	
1	1	0	15	85	6.1	42.1	1.71
2	1	1	15	99	7.1	11.4	1.84
3	3	0	60	12	0.9	27.6	1.34
4	3	1	60	61	4.4	9.0	1.05
5	5	0	60	3	0.2	3.01	1.17
6	5	1	60	44	3.2	3.7	1.28
7	6	0	60	9	0.7	12.4	1.37
8	6	1	60	83	6.0	5.6	1.12
9	8	0	1440	27	1.9	15.53	1.39
10	8	1	1440	67	4.8	8.28	1.35

SI Table 3. Polylactides isolated from the ROP of L-lactide in bulk melt at 100 °C.

^a All reactions were conducted without solvent at 100 °C with L-lac:Zn 50:1. ^b Lactide conversion as determined by ¹H NMR. ^c $M_{n, calc} = (M/I) \times (\% \text{ conv.}) \times (\text{mol. wt. of lactide})$. ^d $M_{n, obs}$ values were determined by GPC in THF vs polystyrene standards and were corrected with a Mark-Houwink factor = 0.58.

SI Figure 15. ¹H NMR spectrum of PLLA isolated from polymerization with **1** in toluene in presence of 4-fluorophenol at 100 °C, Table 2, entry 2.

SI Figure 16. ${}^{1}H$ ¹H NMR spectrum of isolated PLLA from polymerization with **1** in toluene in presence of 4-fluorophenol at 100 °C.

Zoom in of {¹H}¹H NMR spectrum

SI Figure 17. M_n versus percentage conversion of PLA produced from the ROP of L-lactide by **1** with 250 mg of L-lactide with 4-fluorophenol ([L-lac]/[**1**]/[co-catalyst] = 100/1/1) and 30 min of reaction time at 100 °C in toluene. PDI values are provided in parentheses.

SI Figure 18. M_n versus percentage conversion of PLA produced from the ROP of L-lactide by **1** with 250 mg of L-lactide in absence of 4-fluorophenol ([L-lac]/[**1**]/[co-catalyst] = 100/1/0) and 30 min of reaction time at 100 °C in toluene. PDI values are provided in parentheses.

SI Figure 19. Chromatograms of polymeric materials isolated in double feed experiment with **1**. Chromatogram of isolated PLLA after treatment of **1** with 250 mg of L-lactide with 4-fluorophenol ([L-lac]/[**1**]/[co-catalyst] = 100/1/1) and 30 min of reaction time in toluene at 100 °C (solid line, M_n = 16.8 kD, PDI= 1.60) and chromatogram of isolated PLLA after second addition of 250 mg of L-lactide and 30 min of reaction time (dashed line, M_n = 25.7 kD, PDI= 1.56).

SI Figure 20. Chromatograms of polymeric materials isolated in double feed experiment with **1**. Chromatogram of isolated PLLA after treatment of **1** with 250 mg of L-lactide in absence of 4-fluorophenol ([L-lac]/[**1**]/[co-catalyst] = 100/1/0) and 30 min of reaction time in toluene at 100 °C (solid line, M_n = 68.9 kD, PDI= 1.08) and chromatogram of isolated PLLA after second addition of 250 mg of L-lactide and 30 min of reaction time (dashed line, M_n = 162.4 kD, PDI= 1.17).

SI Figure 21. ¹H NMR spectrum of **1** treated with 4-fluorophenol at 300 K.

Zoom of ¹H NMR spectrum from above where compound $\mathbf{1}$, pro-ligand (PL) and the in situ alkoxide (A) signals are annotated.

SI - 25

SI Figure 22. ¹⁹F NMR spectrum of **1** treated with 4-fluorophenol at 300 K.

SI Figure 23. ¹⁹F NMR spectrum of 4-fluorophenol at 300 K.

