Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2014

Supplementary Information

Selective conversion of alcohols in water to carboxylic acids by in situ generated ruthenium trans dihydrido carbonyl PNP complexes

Jong-Hoo Choi,^a Leo E. Heim,^a Mike Ahrens,^b and Martin H. G. Prechtl^{a,}*

^a Department of Chemistry, University of Cologne, Greinstr.6,50939 Cologne, Germany.
Fax: +49 221 470 1788; Tel: +49 221 470 1981;
E-mail: martin.prechtl@uni-koeln.de Web: www.catalysislab.de
^b Institute of Chemistry, Humboldt University at Berlin, Brook-Taylor-Straße 2, D-12489 Berlin, Germany.

Table of contents

1.	Online gas-phase mass spectrometry of the alcohol decarbonylation by complex 3 4
	Fig. S1 MS-monitoring of the decarbonylation reaction of ethanol (black) and ethanol-d6 (red) by 0.2 mmol complex 2. Diagram shows the detected averaged distribution of evolved hydrocarbons
	Fig. S2 MS-monitoring of the decarbonylation reaction of pentanol by 0.2 mmol complex 2. Diagram shows the detected averaged distribution of evolved hydrocarbons
2.	LIFDI-MS analysis of complexes 3, 4a, 4b and 65
	Fig. S3 LIFDI-MS (Argon collided) of [RuH ₂ (CO)(Me-PNP)] 3 (black, 501 – 511)in toluene compared to simulated isotope pattern of [RuH ₂ (CO)(Me-PNP)] 507 (red, 501 – 511). Retention time (RT) 2.14 min of 7.00 min
	Fig. S4 Simulated istope pattern of fragment [RuH(CO)(Me-PNP)] 500 – 509
	Fig. S5 Simulated istope pattern of fragment [Ru(CO)(Me-PNP)] 499 – 508
	Fig. S6 LIFDI-MS/MS of [RuH(CO)(Me-PNP)] 506 (black, 501 – 509) in toluene decomposed from complex 4a under MS conditions compared to simulated isotope pattern of [RuH(CO)(Me-PNP)] 506 (red, 501 – 509). RT 5.23 min of 7.00 min. Compared to the simulated isotope pattern of [RuH(CO(Me-PNP)] 506 m/z in red, the detected fragment differs slightly towards lower mass value, which can be explained by the detection of a fragmentation mixture of the species [Ru(CO)(Me-PNP)] 505 (see simulated isotope pattern in Fig. S5) and [RuH(CO)(Me-PNP)] 506
	Fig. S7 Simulated istope pattern of fragment [Ru(CO)(OOCCH ₃)(Me-PNP)] 558 – 569
	Fig. S8 LIFDI-MS/MS of [RuH(CO)(PNP)] 6 (black, 485 – 495)in toluene compared to simulated isotope pattern of [RuH(CO)(PNP)] 491 (red, 485 – 495). Retention time (RT) 2.61 min of 7.00 min
	Fig. S9 Simulated istope pattern of fragment [Ru(CO)(PNP)] 484 – 494
3.	IR spectra of complexes 3, 4a, 4b and 79
	Fig. S10 IR spectra of [RuH ₂ (CO)(Me-PNP)] 3 (black) and [RuH ₂ (13 CO)(Me-PNP)] 3 (red)
	Fig. S11 IR spectrum of [RuH(CO)(hexanolate)(Me-PNP)] 4a
	Fig. S12 IR spectrum of [RuH(CO)(OOCCH₃)(Me-PNP)] 4b10
	Fig. S13 IR spectra of [RuH(CO)(PNP)] 6 (black) and [RuH(¹³ CO)(PNP)] 6 (red)
4.	NMR spectra of complexes 3, 4a, 4b and 6 11
	Fig. S14 1 H-NMR of [RuH ₂ (CO)(Me-PNP)] 3 in C ₆ D ₆ at 600 MHz11
	Fig. S15 $^{13}C_{APT}$ -NMR of 3 in C ₆ D ₆ at 75 MHz
	Fig. S16 ¹³ C _{APT} -NMR of [RuH ₂ (¹³ CO)(Me-PNP)] 3 at 75 MHz
	Fig. S17 ¹ H-NMR of [RuH(CO)(hexanolate)(Me-PNP)] 4a in C_6D_6 at 600 MHz
	Fig. S18 13 C-deptQ-NMR of [RuH(CO)(hexanolate)(Me-PNP)] 4a in C ₆ D ₆ at 150 MHz 13
	Fig. S19 H,C HMQC of [RuH(CO)(hexanolate)(Me-PNP)] 4a in C ₆ D ₆ at 600 MHz (¹ H) 150 MHz (¹³ C)

	Fig. S20 ¹ H-NMR of [RuH(CO)(OOCCH ₃)(Me-PNP)] 4b in C_6D_6 at 600 MHz	14
	Fig. S21 13 C-deptQ-NMR of [RuH(CO)(OOCCH ₃)(Me-PNP)] 4b in C ₆ D ₆ at 150 MHz 1	14
	Fig. S22 H,C HMQC of [RuH(CO)(OOCCH ₃)(Me-PNP)] 4b in C ₆ D ₆ at 600 MHz (¹ H)/150 MHz (¹³ C $($	2). 15
	Fig. S23 1 H-NMR of [RuH(CO) (PNP)] 6 in C ₆ D ₆ at 300 MHz	15
	Fig. S24 $^{13}C_{APT}$ -NMR of [RuH(CO) (PNP)] 6 in C ₆ D ₆ at 75 MHz	16
	Fig. S 25 ¹³ C _{APT} -NMR of [RuH(¹³ CO) (PNP)] 6 in C ₇ D ₈ at 75 MHz	16
	Fig. S26 ${}^{31}P{}^{1}H{}$ -NMR of [RuH(CO) (PNP)] 6 in C ₆ D ₆ at 121 MHz	17
	Fig. S27 1 H-NMR of complex 7 in C ₆ D ₆ at 300 MHz. Hydrogenation of complex 6 to complex 7 with 1.5 bar H ₂	17
	Fig. S28 ${}^{31}P{}^{1}H{}$ -NMR of complex 7 in C ₆ D ₆ at 121 MHz. Hydrogenation of complex 6 to complex 7 with 1.5 bar H ₂ , 79% conversion	18
Si	ngle Chrystal structure of complex 4b1	19
	Fig. S29 ORTEP diagram of the single crystal structure of complex 4b. Ellipsoids are illustrated at 50% possibility. All hydrogen atoms not depicted here except for H1 for clarity	ժ 19

5.

1. Online gas-phase mass spectrometry of the alcohol decarbonylation by complex 3

Fig. S1 MS-monitoring of the decarbonylation reaction of ethanol (black) and ethanol-d6 (red) by 0.2 mmol complex **2**. Diagram shows the detected averaged distribution of evolved hydrocarbons.

Fig. S2 MS-monitoring of the decarbonylation reaction of pentanol by 0.2 mmol complex 2. Diagram shows the detected averaged distribution of evolved hydrocarbons.

2. LIFDI-MS analysis of complexes 3, 4a, 4b and 6

Fig. S3 LIFDI-MS (Argon collided) of $[RuH_2(CO)(Me-PNP)]$ **3** (black, 501 - 511) in toluene compared to simulated isotope pattern of $[RuH_2(CO)(Me-PNP)]$ 507 (red, 501 - 511). Retention time (RT) 2.14 min of 7.00 min.

Fig. S4 Simulated istope pattern of fragment [RuH(CO)(Me-PNP)] 500 - 509.

Fig. S5 Simulated istope pattern of fragment [Ru(CO)(Me-PNP)] 499 – 508.

Fig. S6 LIFDI-MS/MS of [RuH(CO)(Me-PNP)] 506 (black, 501 - 509) in toluene decomposed from complex **4a** under MS conditions compared to simulated isotope pattern of [RuH(CO)(Me-PNP)] 506 (red, 501 - 509). RT 5.23 min of 7.00 min. Compared to the simulated isotope pattern of [RuH(CO(Me-PNP)] 506 m/z in red, the detected fragment differs slightly towards lower mass value, which can be explained by the detection of a fragmentation mixture of the species [Ru(CO)(Me-PNP)] 505 (see simulated isotope pattern in Fig. S5) and [RuH(CO)(Me-PNP)] 506.

Fig. S7 Simulated istope pattern of fragment [Ru(CO)(OOCCH₃)(Me-PNP)] 558 – 569.

Fig. S8 LIFDI-MS/MS of [RuH(CO)(PNP)] **6** (black, 485 – 495)in toluene compared to simulated isotope pattern of [RuH(CO)(PNP)] 491 (red, 485 – 495). Retention time (RT) 2.61 min of 7.00 min.

Fig. S9 Simulated istope pattern of fragment [Ru(CO)(PNP)] 484 – 494.

3. IR spectra of complexes 3, 4a, 4b and 7

Fig. S10 IR spectra of [RuH₂(CO)(Me-PNP)] 3 (black) and [RuH₂(¹³CO)(Me-PNP)] 3 (red).

Fig. S11 IR spectrum of [RuH(CO)(hexanolate)(Me-PNP)] 4a.

Fig. S12 IR spectrum of [RuH(CO)(OOCCH₃)(Me-PNP)] 4b.

Fig. S13 IR spectra of [RuH(CO)(PNP)] 6 (black) and [RuH(¹³CO)(PNP)] 6 (red).

4. NMR spectra of complexes 3, 4a, 4b and 6

Fig. S14 ¹H-NMR of [RuH₂(CO)(Me-PNP)] 3 in C_6D_6 at 600 MHz.

Fig. S15 ${}^{13}C_{APT}$ -NMR of 3 in C₆D₆ at 75 MHz.

Fig. S16 $^{13}\mathrm{C}_{\mathrm{APT}}\text{-}\mathrm{NMR}$ of $[\mathrm{RuH}_2(^{13}\mathrm{CO})(\mathrm{Me}\text{-}\mathrm{PNP})]$ 3 at 75 MHz.

Fig. S17 ¹H-NMR of [RuH(CO)(hexanolate)(Me-PNP)] 4a in C₆D₆ at 600 MHz.

Fig. S18¹³C-deptQ-NMR of [RuH(CO)(hexanolate)(Me-PNP)] 4a in C₆D₆ at 150 MHz.

Fig. S19 H,C HMQC of [RuH(CO)(hexanolate)(Me-PNP)] 4a in C₆D₆ at 600 MHz (¹H) 150 MHz (¹³C).

Fig. S20 ¹H-NMR of [RuH(CO)(OOCCH₃)(Me-PNP)] 4b in C₆D₆ at 600 MHz.

Fig. S21¹³C-deptQ-NMR of [RuH(CO)(OOCCH₃)(Me-PNP)] 4b in C₆D₆ at 150 MHz.

Fig. S22 H,C HMQC of [RuH(CO)(OOCCH₃)(Me-PNP)] 4b in C_6D_6 at 600 MHz (¹H)/150 MHz (¹³C).

Fig. S23 ¹H-NMR of [RuH(CO) (PNP)] **6** in C₆D₆ at 300 MHz.

Fig. S24 $^{13}\mathrm{C}_{\mathrm{APT}}\text{-}\mathrm{NMR}$ of [RuH(CO) (PNP)] 6 in $\mathrm{C}_6\mathrm{D}_6$ at 75 MHz.

Fig. S 25 ¹³C_{APT}-NMR of [RuH(¹³CO) (PNP)] 6 in C₇D₈ at 75 MHz.

118.0 117.5 117.0 116.5 116.0 115.5 115.0 114.5 113.0 113.5 113.0 112.5 112.0 111.5 111.0 110.5 110.0 109.5 109.0 108.5 108.0 107.5 107.0 106.5 106.0 17.5 107.0 17.5 107.5 107.5 107.5 107.5

Fig. S26 $^{31}P\{^{1}H\}$ -NMR of [RuH(CO) (PNP)] 6 in C_6D_6 at 121 MHz.

Fig. S27 ¹H-NMR of complex 7 in C_6D_6 at 300 MHz. Hydrogenation of complex 6 to complex 7 with 1.5 bar H₂.

Fig. S28 ${}^{31}P{}^{1}H$ -NMR of complex **7** in C₆D₆ at 121 MHz. Hydrogenation of complex **6** to complex **7** with 1.5 bar H₂, 79% conversion.

5. Single Chrystal structure of complex 4b

Fig. S29 ORTEP diagram of the single crystal structure of complex 4b. Ellipsoids are illustrated at 50% possibility. All hydrogen atoms not depicted here except for H1 for clarity.

Identification code	shelx			
Empirical formula	C26 H55 N O5 P2 Ru			
Formula weight	624.72			
Temperature	293(2) K			
Wavelength	0.71073 Å			
Crystal system	Monoclinic			
Space group	P 21/n			
Unit cell dimensions	a = 11.6024(4) Å	<i>α</i> = 90°.		
	b = 20.5977(6) Å	β=113.029(2)°.		
	c = 14.1642(4) Å	$\gamma = 90^{\circ}$.		
Volume	3115.24(17) Å ³			
Z	4			
Density (calculated)	1.332 Mg/m ³			
Absorption coefficient	0.639 mm ⁻¹			
F(000)	1328			
Crystal size	? x ? x ? mm ³			
Theta range for data collection	1.849 to 26.789°.			
Index ranges	-14<=h<=14, -25<=k<=26, -17<=l<=17			
Reflections collected	31157			
	19			

Table 1. Crystal data and structure refinement for shelx.

Independent reflections	6585 [R(int) = 0.0394]
Completeness to theta = 25.242°	100.0 %
Refinement method	Full-matrix least-squares on ${\rm F}^2$
Data / restraints / parameters	6585 / 0 / 316
Goodness-of-fit on F ²	1.027
Final R indices [I>2sigma(I)]	R1 = 0.0308, wR2 = 0.0780
R indices (all data)	R1 = 0.0376, wR2 = 0.0823
Extinction coefficient	n/a
Largest diff. peak and hole	0.701 and -0.620 e.Å ⁻³

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10^3) for shelx. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	X	у	Z	U(eq)
Ru(1)	2715(1)	1478(1)	7506(1)	23(1)
P(02)	1067(1)	1667(1)	8038(1)	26(1)
P(01)	4037(1)	874(1)	6936(1)	26(1)
O(03)	3880(2)	3090(1)	7651(1)	41(1)
O(02)	2581(2)	2371(1)	6594(1)	36(1)
O(01)	4724(2)	1916(1)	9466(2)	58(1)
N(01)	1177(2)	1077(1)	6100(1)	28(1)
C(02)	3108(2)	2915(1)	6786(2)	34(1)
C(17)	595(2)	2531(1)	8155(2)	37(1)
C(07)	5311(2)	1257(1)	6601(2)	37(1)
C(21)	1115(2)	1175(1)	9194(2)	37(1)
C(04)	665(2)	1567(1)	5269(2)	39(1)
C(05)	1617(2)	502(1)	5687(2)	39(1)
C(01)	3947(2)	1755(1)	8691(2)	37(1)
C(11)	4689(3)	112(1)	7703(2)	40(1)
C(15)	133(2)	837(1)	6378(2)	32(1)
C(16)	-296(2)	1332(1)	6960(2)	32(1)
C(13)	5374(3)	290(2)	8833(2)	57(1)
C(19)	273(3)	2851(2)	7110(2)	54(1)
C(06)	2916(2)	593(1)	5682(2)	40(1)
C(22)	1313(4)	466(2)	9042(3)	66(1)
C(12)	5554(3)	-282(2)	7327(3)	51(1)
C(08)	4850(4)	1922(2)	6171(3)	66(1)
C(03)	2777(3)	3382(2)	5893(2)	50(1)

C(09)	5676(3)	883(2)	5830(3)	56(1)
C(14)	3605(3)	-345(1)	7622(3)	59(1)
C(10)	6494(3)	1354(2)	7585(3)	63(1)
C(20)	1724(3)	2883(2)	8931(3)	57(1)
C(18)	-538(4)	2622(2)	8429(4)	79(1)
C(24)	-66(5)	1211(3)	9394(4)	133(3)
C(23)	2220(5)	1391(2)	10138(3)	98(2)
O(201)	-192(2)	796(1)	2858(2)	39(1)
O(200)	1496(2)	253(1)	3002(2)	56(1)
C(101)	948(2)	764(1)	2880(2)	37(1)
C(100)	1527(3)	1392(2)	2756(3)	53(1)