
Kinetics and Mechanistic Investigation into the Possible Activation of Imidazolium *trans*-tetrachloro(dimethyl sulfoxide)imidazole-ruthenate(III), NAMI-A, by 2-Mercaptoethane sulfonate

Supplementary Information.

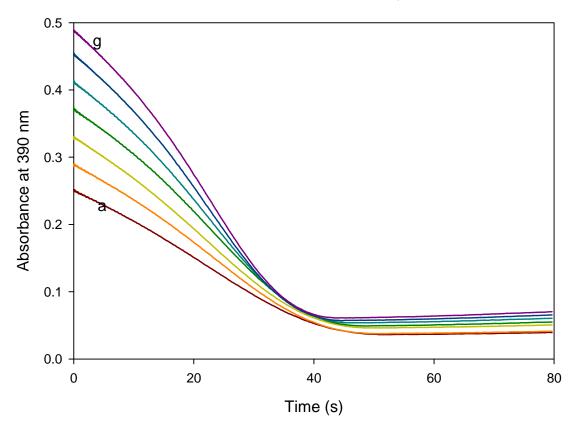


Figure S1: Kinetic traces of reaction in 0.1 M phosphate buffer (Ph 7.4) showing dependence on [NAMI-A] at its λ_{max} . [MESNA]_o = 5.0 x 10⁻² M; [NAMI-A]_o = (a) 5.0 x 10⁻⁵ M (b) 6.0 x 10⁻⁵ M (c) 7.0 x 10⁻⁵ M (d) 6.0 x 10⁻⁵ M (e) 9.0 x 10⁻⁵ M (f) 1.0 x 10⁻⁴ M

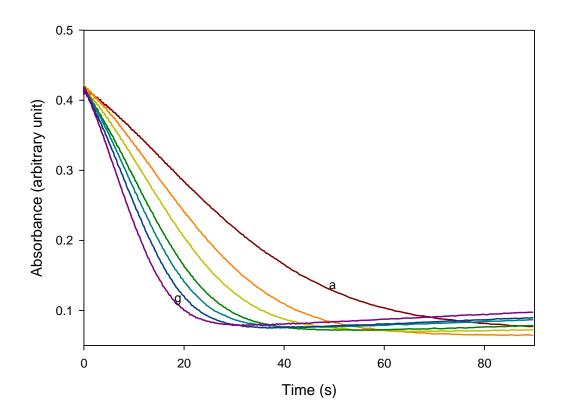


Figure S2: Initial rate plot derived from Figure 3a, showing linear dependence on NAMI-A. [MESNA] $_{o}$ = 2.0×10^{-3} M; [NAMI-A] $_{o}$ = 3.0×10^{-5} M to 9.0×10^{-5} M

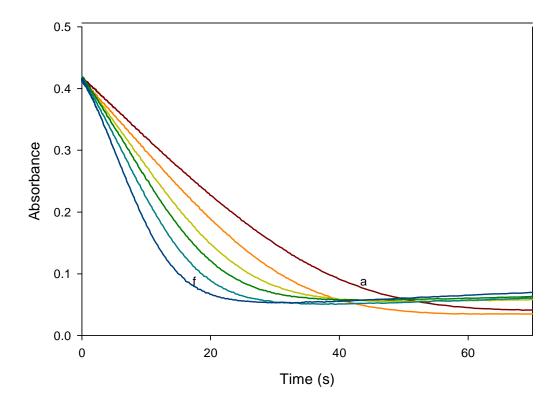

Effect of NAMI-A variation at pH 6.0 using 0.1M acetate buffer

Figure S3: Kinetic traces of reaction in 0.1 M acetate buffer (pH 6.0) showing dependence on [NAMI-A] at its λ_{max} . [MESNA]_o = 5.0 x 10⁻²M; [NAMI-A]_o = (a) 5.0 x 10⁻⁵ M (b) 6.0 x 10⁻⁵ M (c) 7.0 x 10⁻⁵ M (d) 6.0 x 10⁻⁵ M (e) 9.0 x 10⁻⁵ M (f) 1.0 x 10⁻⁴ M (g) 1.1 x 10⁻⁴ M

Figure S4: Effect of MESNA variation on the consumption of NAMI-A at 390 nm (pH 7.4, 0.1 M phosphate buffer). [NAMI-A] $_{o}$ = 1.0 x 10⁻⁴ M; [MESNA] $_{o}$ = (a) 1.0 x 10⁻² M (b) 2.0 x 10⁻² M (c) 3.0 x 10⁻² M (d) 4.0 x 10⁻² M (e) 5.0 x 10⁻² M (f) 6.0 x 10⁻² M (g) 7.0 x 10⁻² M. Reaction rate increased with NAMI-A increase.

Figure S5: Temperature dependence of NAMI-A-MESNA reaction (0.1 M phosphate buffer, pH 7.4). Reaction rate increased with temperature increase. [MESNA] $_{o}$ = 5.0 x 10 $^{-2}$ M; [NAMI-A] $_{o}$ = 5.0 x 10 $^{-2}$ M; Temp = (a) 10 $^{\circ}$ C (b) 15 $^{\circ}$ C (c) 20 $^{\circ}$ C (d) 25 $^{\circ}$ C (e) 30 $^{\circ}$ C (f) 37 $^{\circ}$ C.