SUPPORTING INFORMATION (SI)

Nickel oxide thin film from electrodeposited Nickel sulfide thin

film: Peroxide sensing and photo-decomposition of phenol

Figure captions:

- S1. (a) UV- Vis spectrum of NiS, inset Tauc plot.
- S2. EDAX data of NiS thin film
- Table1. Performances of different H₂O₂ sensors.

Optical studies

The absorption spectrum (Figure S1) of NiS shows a sharp change around 460 nm. Optical band gaps were calculated from the absorbance data by plotting $(\alpha hv)^2$ versus hv and extrapolating the linear portion of the curve to the x-axis; α being the absorption coefficient and hv the photon energy. The direct band gap (E_g) measured from the absorption value was found to be 2.69 eV, which is blue shifted to 0.59 eV over bulk NiS (2.10 eV).

EDAX analysis

The elemental analysis was carried out by the EDX probe associated with FESEM and the Ni:S ratio was found close to unit (Figure S2)

Figures

Figure S1 (a) UV- Vis spectrum of NiS, inset Tauc plot.

Spectrum processing : Peaks possibly omitted : 1.485, 3.325 keV

Processing option : All elements analyzed (Normalised) Number of iterations = 2

Standard : S FeS2 1-Jun-1999 12:00 AM Ni Ni 1-Jun-1999 12:00 AM

Element	Weight%	Atomic%
S K Ni K	36.65 63.35	49.95 51.05
Totals	100.00	

Figure S2: EDAX data of NiS thin film

Electrode	Applied potential (V)	Detection limit	Sensitivity	Linear range	Reference
HRP	-	1.6 µM	12.8 μA mM ⁻¹	4 μM to 100 μM	35
Cytochrome c/Au/C	- 0.1 (vs. Ag/AgCl)	-	-	10 μM to 1.0 mM	36
AgNPs/ZnONRs/FTO	-0.55 (vs. $A\sigma/A\sigma$ Cl)	0.9 μΜ	152.1 μA mM ⁻¹	8 μM to 983 μM	37
ZnO/Au/Nafion/HRP/GCE	-0.3 (vs. Ag/AgCl)	9.0 µM	-	15 μM to 1.1 mM	38
MnO ₂ /Nafion/GCE	+ 0.8 (vs. Ag/AgCl)	2 μΜ	-	$10 \ \mu M$ to 1.5	39
Cu ₂ S/OMCs/Nafion/GCE	- 0.1 (vs. Ag/AgCl)	0.2 μΜ	36.8 μA mM ⁻¹	$1 \mu M$ to 3.03	40
Co ₃ O ₄ /GCE	- 0.2 (vs. Ag/AgCl)	10 µM	4.84 μA mM ⁻¹	$0 \ \mu M$ to 5.35	41
FeS/GCE	– 0.4 (vs. Ag/AgCl)	0.092µM	-	0.5 μM to 150	42
NCNT/GCE	+ 0.3 (vs. SCE)	0.37 μΜ	24.5 μA mM ⁻¹	μ M 1.76 μM to 139 μM	43
SWCNT ensemble networks	-	1.0 mM	-	1.9 to 24 mM	44
CPE/PNMA(SDS)/Co	-	0.018 mM	-	0.03 mM to12 mM	45
NiO/ITO electrode	+ 0.5 (vs. Ag/AgCl)	1.28 mM	2.3 mA mM ⁻¹	10 to 1000 μM	Present work

Table1. Performances of different H_2O_2 sensors.