Electronic Supporting Information

Crystal Structure of $Li_2B_3PO_8$ with 2D-Linkage of BO_3 , BO_4 and PO_4 Groups

Toru Hasegawa and Hisanori Yamane*

Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan

* Corresponding Author:
Hisanori Yamane
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University
2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
E-mail: yamane@tagen.tohoku.ac.jp

Contents

Structural information

- Table S1. Crystal data and refinement results for $Li_2B_3PO_8$.
- Table S2. Atomic coordinates and isotropic and equivalent isotropic displacement parameter (U_{eq}) for Li₂B₃PO₈.
- Table S3. Anisotropic displacement parameters $(U_{ij} / \text{Å})$ for Li₂B₃PO₈.
- Table S4. Selected bond lengths and bond valence sums (V_i) for Li₂B₃PO₈.
- Table S5. Borophosphates reported in the literatures since 2007.

Electrical resistivity

- Fig. S1 Complex impedance plots for a polycrystalline Li₂B₃PO₈ sample at 583, 603, and 618 K.
- Fig. S2 Arrhenius plots of the conductivities of Li₂B₃PO₈ and Li₃BP₂O₈ measured by the AC impedance method.

Chemical formula	Li ₂ B ₃ PO ₈				
Formula weight, M _r	205.28 g·mol ^{−1}				
Temperature, T	293(2) K				
Crystal system	Triclinic				
Space group	<i>P</i> ¹ (No.2)				
Unit cell dimensions	a = 8.6965(3) Å	$\alpha = 90.8057(14)^{\circ}$			
	b = 10.7354(5) Å	$\beta = 90.6311(12)$ °			
	c = 12.8282(5) Å	$\gamma = 90.0940(13)$ °			
Unit cell volume, V	1197.45(8) Å ³				
Ζ	8				
Calculated density, D_{cal}	2.277 Mg⋅m ⁻³				
Radiation wavelength, λ	0.71075 Å (MoKα)				
Crystal form, color	Colorless				
Absorption correction	Numerical				
Absorption coefficient, μ	0.464 mm ⁻¹				
Crystal size	0.146×0.105×0.070 mm ³				
Limiting indices	$-11 \le h \le 10$				
	$-13 \le k \le 13$				
	$-16 \le l \le 16$				
F_{000}	800				
θ range for data collection	3.01°-27.49°				
Reflections collected / unique	5417 / 4094				
$R_{\rm int}$	0.0313				
Data / restraints / parameters	5417 / 0 / 505				
Weight parameters, a, b	0.0256, 3.1989				
Goodness-of-fit on F^2 , S	1.100				
$R1, wR2 (I > 2\sigma(I))$	0.0396, 0.0891				
R1, wR2 (all data)	0.0599, 0.1033				
Largest diff. peak and hole, $\Delta \rho$	0.491, -0.516 e·Å ⁻	3			

Table S1. Crystal data and refinement results for Li₂B₃PO₈.

 $R1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|. \quad wR2 = [\Sigma w (F_o^2 - F_c^2)^2 / \Sigma (wF_o^2)^2]^{1/2}, w = 1 / [\sigma^2 (F_o^2) + (aP)^2 + bP], \text{ where } F_o \text{ is the observed structure factor, } F_c \text{ is the calculated structure factor, } \sigma \text{ is the standard deviation of } F_c^2, \text{ and } P = (F_o^2 + 2F_c^2) / 3. \quad S = [\Sigma w (F_o^2 - F_c^2)^2 / (n-p)]^{1/2}, \text{ where } n \text{ is the number of reflections and } p \text{ is the total number of parameters refined.}$

Atom	Site	x	У	Z	$U_{ m eq}$ * / Å ²
Lil	2 <i>i</i>	0.1194(7)	0.3435(6)	0.7149(5)	0.0269(13)
Li2	2 <i>i</i>	0.1349(7)	0.7728(5)	0.2632(5)	0.0229(12)
Li3	2 <i>i</i>	0.2177(7)	0.2781(5)	0.0384(5)	0.0248(13)
Li4	2 <i>i</i>	0.2550(7)	0.5441(5)	0.3297(5)	0.0256(13)
Li5	2 <i>i</i>	0.2578(7)	0.0611(5)	0.8284(5)	0.0253(13)
Li6	2 <i>i</i>	0.3636(6)	0.5413(5)	0.0092(4)	0.0191(11)
Li7	2 <i>i</i>	0.4378(9)	0.0430(6)	0.4145(6)	0.0411(18)
Li8	2 <i>i</i>	0.7620(7)	0.1693(5)	0.3954(5)	0.0267(13)
B1	2 <i>i</i>	0.2584(5)	0.9615(4)	0.2316(4)	0.0108(6)
B2	2 <i>i</i>	0.1188(4)	0.1104(3)	0.4252(3)	0.0129(7)
В3	2 <i>i</i>	0.1895(4)	0.0114(3)	0.1454(3)	0.0132(7)
B4	2 <i>i</i>	0.1998(4)	0.5544(3)	0.6125(3)	0.0142(7)
В5	2 <i>i</i>	0.3018(4)	0.2599(3)	0.3506(3)	0.0134(7)
B6	2 <i>i</i>	0.3936(4)	0.3953(3)	0.6465(3)	0.0131(7)
B7	2 <i>i</i>	0.4455(4)	0.0863(3)	0.1207(3)	0.0126(7)
B8	2 <i>i</i>	0.5442(4)	0.3815(3)	0.3393(3)	0.0138(7)
B9	2 <i>i</i>	0.5910(4)	0.1150(3)	0.7927(3)	0.0135(7)
B10	2 <i>i</i>	0.6894(4)	0.1961(3)	0.0760(3)	0.0137(7)
B11	2 <i>i</i>	0.9067(4)	0.3404(3)	0.0575(3)	0.0138(7)
B12	2 <i>i</i>	0.9459(4)	0.1200(3)	0.1009(3)	0.0142(7)
P1	2 <i>i</i>	0.07737(9)	0.52997(7)	0.12829(6)	0.01285(17)
P2	2 <i>i</i>	0.09892(9)	0.06616(7)	0.63710(6)	0.01323(17)
P3	2 <i>i</i>	0.59107(9)	0.20738(7)	0.59192(6)	0.01129(16)
P4	2 <i>i</i>	0.59190(9)	0.69182(7)	0.14312(6)	0.01225(17)
O1	2 <i>i</i>	0.0035(2)	0.20989(19)	0.41305(18)	0.0173(5)
02	2 <i>i</i>	0.0035(2)	0.2347(2)	0.09068(18)	0.0172(5)
O3	2 <i>i</i>	0.0345(2)	0.0188(2)	0.12575(18)	0.0171(5)
O4	2 <i>i</i>	0.0416(2)	0.6339(2)	0.04828(17)	0.0171(5)
O5	2 <i>i</i>	0.0474(2)	0.5746(2)	0.59950(19)	0.0196(5)
O6	2 <i>i</i>	0.0622(2)	0.9913(2)	0.38834(18)	0.0173(5)
O7	2 <i>i</i>	0.0688(3)	0.1807(2)	0.70236(19)	0.0229(5)
08	2 <i>i</i>	0.0690(2)	0.5546(2)	0.87040(17)	0.0166(5)
09	2 <i>i</i>	0.0853(2)	0.5941(2)	0.23411(17)	0.0170(5)
O10	2 <i>i</i>	0.1744(3)	0.1019(2)	0.53217(18)	0.0214(5)
O11	2 <i>i</i>	0.1994(2)	0.35617(19)	0.36482(18)	0.0167(5)

Table S2. Atomic coordinates and isotropic and equivalent isotropic displacement parameter (U_{eq}) for Li2B3PO8.

O12	2 <i>i</i>	0.2173(2)	0.4567(2)	0.09794(18)	0.0173(5)
O13	2 <i>i</i>	0.2449(2)	0.90717(19)	0.18980(17)	0.0141(4)
O14	2 <i>i</i>	0.2486(2)	0.43693(19)	0.59977(17)	0.0149(4)
O15	2 <i>i</i>	0.2600(2)	0.14049(19)	0.36507(17)	0.0145(4)
O16	2 <i>i</i>	0.2673(2)	0.7189(2)	0.38041(17)	0.0168(5)
O17	2 <i>i</i>	0.2883(2)	0.2233(2)	0.90071(17)	0.0177(5)
O18	2 <i>i</i>	0.2885(2)	0.10564(19)	0.11519(17)	0.0162(5)
O19	2 <i>i</i>	0.3444(2)	0.3478(2)	0.74722(17)	0.0185(5)
O20	2 <i>i</i>	0.4371(2)	0.76109(19)	0.16470(17)	0.0154(5)
O21	2 <i>i</i>	0.4502(2)	0.28156(19)	0.32196(18)	0.0162(5)
O22	2 <i>i</i>	0.4518(2)	0.29727(19)	0.57872(17)	0.0159(5)
O23	2 <i>i</i>	0.4941(2)	0.50111(19)	0.34115(17)	0.0156(5)
O24	2 <i>i</i>	0.4954(2)	0.0189(2)	0.83939(17)	0.0157(5)
O25	2 <i>i</i>	0.5336(2)	0.1806(2)	0.08336(18)	0.0173(5)
O26	2 <i>i</i>	0.5529(2)	0.11031(19)	0.67929(17)	0.0153(5)
O27	2 <i>i</i>	0.5538(3)	0.5799(2)	0.07765(18)	0.0204(5)
O28	2 <i>i</i>	0.5978(2)	0.1265(2)	0.49453(17)	0.0160(5)
O29	2 <i>i</i>	0.6991(2)	0.35095(19)	0.35728(18)	0.0173(5)
O30	2 <i>i</i>	0.7430(2)	0.31136(19)	0.05801(18)	0.0166(5)
O31	2 <i>i</i>	0.7890(2)	0.09640(19)	0.08840(18)	0.0157(5)
O32	2 <i>i</i>	0.7960(3)	0.0252(2)	0.30972(18)	0.0190(5)

* $U_{\text{eq}} = (\sum_i \sum_j U_{ij} a_i^* a_j^* a_i \cdot a_j)/3$

Atom	Site	U_{11}	<i>U</i> ₂₂	<i>U</i> ₃₃	<i>U</i> ₂₃	<i>U</i> ₁₃	U_{12}
Lil	2 <i>i</i>	0.019(3)	0.022(3)	0.040(4)	-0.005(3)	0.007(3)	-0.006(2)
Li2	2 <i>i</i>	0.019(3)	0.018(3)	0.031(3)	-0.001(2)	-0.001(2)	-0.004(2)
Li3	2 <i>i</i>	0.023(3)	0.023(3)	0.029(3)	-0.002(2)	0.011(2)	-0.003(2)
Li4	2 <i>i</i>	0.025(3)	0.015(3)	0.036(4)	0.001(2)	-0.008(3)	0.002(2)
Li5	2 <i>i</i>	0.030(3)	0.019(3)	0.026(3)	0.001(2)	-0.005(2)	-0.007(2)
Li6	2 <i>i</i>	0.010(2)	0.021(3)	0.026(3)	-0.003(2)	0.001(2)	0.000(2)
Li7	2 <i>i</i>	0.046(4)	0.026(3)	0.050(4)	-0.009(3)	-0.031(4)	0.009(3)
Li8	2 <i>i</i>	0.029(3)	0.018(3)	0.034(3)	0.000(2)	0.009(3)	0.002(2)
B1	2 <i>i</i>	0.0145(17)	0.0151(17)	0.0178(18)	-0.0011(14)	-0.0011(13)	0.0006(14)
B2	2 <i>i</i>	0.0105(16)	0.0108(15)	0.0175(17)	-0.0004(13)	0.0045(13)	-0.0014(13)
B3	2 <i>i</i>	0.0122(16)	0.0115(15)	0.0158(17)	-0.0001(13)	0.0037(13)	-0.0030(13)
B4	2 <i>i</i>	0.0116(16)	0.0152(17)	0.0160(17)	0.0023(13)	0.0013(13)	-0.0038(13)
B5	2 <i>i</i>	0.0117(16)	0.0133(16)	0.0151(17)	0.0004(13)	-0.0011(13)	0.0020(13)
B6	2 <i>i</i>	0.0128(16)	0.0092(15)	0.0173(17)	-0.0001(13)	-0.0009(13)	-0.0003(13)
B7	2 <i>i</i>	0.0121(16)	0.0125(16)	0.0130(17)	-0.0014(13)	0.0005(13)	-0.0019(13)
B8	2 <i>i</i>	0.0116(16)	0.0145(16)	0.0155(17)	0.0015(13)	0.0011(13)	0.0011(13)
B9	2 <i>i</i>	0.0116(16)	0.0118(16)	0.0173(18)	0.0012(13)	0.0022(13)	-0.0008(13)
B10	2 <i>i</i>	0.0157(17)	0.0136(16)	0.0118(17)	0.0032(13)	-0.0020(13)	-0.0019(13)
B11	2 <i>i</i>	0.0108(16)	0.0080(15)	0.0226(19)	0.0031(13)	-0.0010(13)	-0.0039(12)
B12	2 <i>i</i>	0.0158(17)	0.0141(16)	0.0127(17)	0.0018(13)	-0.0006(13)	-0.0011(13)
P1	2 <i>i</i>	0.0124(4)	0.0108(4)	0.0153(4)	-0.0014(3)	0.0002(3)	-0.0011(3)
P2	2 <i>i</i>	0.0120(4)	0.0113(4)	0.0163(4)	-0.0015(3)	0.0004(3)	-0.0020(3)
P3	2 <i>i</i>	0.0112(4)	0.0085(3)	0.0142(4)	-0.0006(3)	0.0000(3)	0.0003(3)
P4	2 <i>i</i>	0.0117(4)	0.0111(4)	0.0139(4)	-0.0014(3)	0.0005(3)	0.0002(3)
01	2 <i>i</i>	0.0132(11)	0.0107(10)	0.0281(13)	0.0015(9)	0.0033(9)	-0.0005(8)
O2	2 <i>i</i>	0.0101(10)	0.0123(10)	0.0292(13)	0.0042(9)	-0.0025(9)	0.0007(8)
O3	2 <i>i</i>	0.0085(10)	0.0143(11)	0.0285(13)	0.0055(9)	-0.0019(9)	0.0006(8)
O4	2 <i>i</i>	0.0168(11)	0.0151(11)	0.0196(12)	0.0010(9)	0.0046(9)	0.0006(9)
05	2 <i>i</i>	0.0124(11)	0.0111(10)	0.0354(14)	0.0002(10)	-0.0029(10)	0.0022(9)
06	2 <i>i</i>	0.0121(11)	0.0114(10)	0.0283(13)	-0.0019(9)	-0.0018(9)	-0.0015(8)
O7	2 <i>i</i>	0.0199(12)	0.0177(12)	0.0308(14)	-0.0091(10)	0.0039(10)	-0.0043(9)
08	2 <i>i</i>	0.0132(11)	0.0138(11)	0.0230(12)	-0.0020(9)	0.0038(9)	-0.0025(9)
09	2 <i>i</i>	0.0180(11)	0.0157(11)	0.0172(11)	-0.0016(9)	0.0012(9)	-0.0024(9)
O10	2 <i>i</i>	0.0161(12)	0.0280(13)	0.0200(12)	0.0032(10)	-0.0021(9)	-0.0062(10)
011	2 <i>i</i>	0.0114(10)	0.0111(10)	0.0278(13)	0.0016(9)	0.0017(9)	-0.0004(8)
012	2 <i>i</i>	0.0136(11)	0.0146(11)	0.0237(12)	-0.0016(9)	0.0032(9)	-0.0004(9)

Table S3. Anisotropic displacement parameters $(U_{ij} / \text{Å})$ for Li₂B₃PO₈.

013	2 <i>i</i>	0.0114(10)	0.0097(10)	0.0214(12)	0.0037(8)	0.0014(8)	0.0000(8)
014	2 <i>i</i>	0.0134(11)	0.0113(10)	0.0200(12)	-0.0002(9)	-0.0032(9)	0.0006(8)
015	2 <i>i</i>	0.0109(10)	0.0097(10)	0.0230(12)	0.0006(9)	0.0052(9)	-0.0014(8)
016	2 <i>i</i>	0.0141(11)	0.0142(11)	0.0221(12)	-0.0011(9)	-0.0003(9)	-0.0022(9)
O17	2 <i>i</i>	0.0164(11)	0.0161(11)	0.0206(12)	0.0000(9)	0.0042(9)	-0.0022(9)
018	2 <i>i</i>	0.0121(11)	0.0127(10)	0.0239(12)	0.0063(9)	0.0005(9)	0.0009(8)
019	2 <i>i</i>	0.0154(11)	0.0220(12)	0.0181(12)	0.0031(9)	-0.0004(9)	-0.0012(9)
O20	2 <i>i</i>	0.0118(10)	0.0129(10)	0.0213(12)	-0.0018(9)	0.0022(9)	-0.0003(8)
O21	2 <i>i</i>	0.0121(10)	0.0115(10)	0.0252(12)	-0.0014(9)	0.0048(9)	-0.0014(8)
O22	2 <i>i</i>	0.0154(11)	0.0125(10)	0.0197(12)	-0.0019(9)	-0.0024(9)	0.0036(9)
O23	2 <i>i</i>	0.0108(10)	0.0104(10)	0.0256(12)	0.0000(9)	-0.0013(9)	0.0012(8)
O24	2 <i>i</i>	0.0103(10)	0.0156(11)	0.0214(12)	0.0038(9)	0.0012(8)	-0.0011(8)
O25	2 <i>i</i>	0.0108(10)	0.0154(11)	0.0258(12)	0.0065(9)	0.0005(9)	0.0001(9)
O26	2 <i>i</i>	0.0193(11)	0.0107(10)	0.0159(11)	0.0006(8)	-0.0022(9)	-0.0005(9)
O27	2 <i>i</i>	0.0181(12)	0.0172(11)	0.0256(13)	-0.0097(10)	-0.0019(9)	0.0010(9)
O28	2 <i>i</i>	0.0167(11)	0.0146(11)	0.0166(11)	-0.0034(9)	0.0010(9)	-0.0004(9)
O29	2 <i>i</i>	0.0107(10)	0.0100(10)	0.0314(13)	0.0010(9)	0.0016(9)	0.0005(8)
O30	2 <i>i</i>	0.0135(11)	0.0109(10)	0.0255(12)	0.0032(9)	-0.0014(9)	-0.0004(8)
O31	2 <i>i</i>	0.0081(10)	0.0124(10)	0.0269(12)	0.0046(9)	0.0006(9)	0.0012(8)
O32	2 <i>i</i>	0.0188(12)	0.0180(11)	0.0202(12)	0.0010(9)	-0.0033(9)	-0.0008(9)

Li1–O7	1.806(6)	Li2–O7 ⁱ	1.896(6)
Li1-019	1.995(6)	Li2-016	1.978(6)
Li1–O9 ⁱ	2.016(6)	Li2-013	1.984(6)
Li1-014	2.127(7)	Li2–O9	1.995(6)
$V_{\rm Li1}$	1.03	$V_{\rm Li2}$	1.05
Li3–O17 ⁱⁱ	1.959(6)	Li4016	1.980(6)
Li3–O2	2.042(6)	Li4–09	1.987(6)
Li3-012	2.054(6)	Li4-011	2.129(6)
Li3-018	2.195(6)	Li4-023	2.135(6)
$V_{\rm Li3}$	0.82	$V_{\rm Li4}$	0.82
Li5-017	1.978(6)	Li6–O27 ^{iv}	1.852(6)
Li5–O32 ⁱⁱⁱ	2.037(6)	Li6-027	1.906(6)
Li5–O31 ⁱⁱⁱ	2.055(6)	Li6-012	1.949(6)
Li5-024	2.119(7)	Li6–O30 ^{iv}	2.032(6)
$V_{\rm Li5}$	0.84	$V_{\rm Li6}$	1.14
Li7–O28	1.933(7)	Li8–O32	1.910(6)
Li7-015	1.972(7)	Li8–O28	1.980(6)
Li7–O26 ⁱⁱⁱ	2.027(7)	Li8–O29	2.089(6)
Li7–O28 ⁱⁱⁱ	2.200(8)	Li8–O1 ^v	2.154(7)
$V_{\rm Li7}$	0.89	$V_{\rm Li8}$	0.89
B1O1	1.346(4)	B2–O6 ^{vi}	1.440(4)
$B1-O5^{i}$	1.347(4)	B2–O10	1.454(4)
B1011	1.403(4)	B2–O1	1.475(4)
$V_{\rm B1}$	3.05	B2015	1.495(4)
		$V_{\rm B2}$	3.10
B3013vi	1.350(4)	B4014	1.339(4)
B3–O3	1.371(4)	B4–O5	1.352(4)
B3018	1.389(4)	B4–O29 ^{vii}	1.391(4)
$V_{\rm B3}$	3.01	$V_{\rm B4}$	3.09

Table S4. Selected bond lengths and bond valence sums (V_i) for Li₂B₃PO₈.

B5015	1.347(4)	B6–O22	1.452(4)
B5-O21	1.366(4)	B6–O14	1.464(4)
B5011	1.377(4)	B6–O19	1.464(4)
$V_{\rm B5}$	3.06	B6–O23 ^{vii}	1.484(4)
		$V_{\rm B6}$	3.10
B7–O24 ⁱⁱⁱ	1.348(4)	B8–O23	1.357(4)
B7–O25	1.364(4)	B8-O21	1.362(4)
B7–O18	1.382(4)	B8–O29	1.404(4)
V_{B7}	3.06	$V_{\rm B8}$	2.98
B9–O20 ^{vii}	1.453(4)	B10-O30	1.346(4)
B9–O24	1.463(4)	B10–O25	1.369(4)
B9013vi	1.463(4)	B10-O31	1.387(4)
B9–O26	1.488(4)	$V_{\rm B10}$	3.03
$V_{\rm B9}$	3.09		
D11 O20	1 457(4)		1 220(4)
B11-030	1.437(4)	$B12-O2^{\vee}$	1.338(4) 1.272(4)
$BII-08^{\text{vir}}$	1.461(4)	B12-03 ⁺	1.3/2(4)
$B11-04^{W}$	1.463(4)	B12-031	1.394(4)
B11-02 ^v	1.479(4)	$V_{\rm B12}$	3.03
$V_{\rm B11}$	3.10		
P1012	1.502(2)	P207	1.503(2)
P109	1.514(2)	P2–O32 ⁱⁱⁱ	1.506(2)
P1O4	1.556(2)	P2O10	1.557(2)
P108 ⁱ	1.563(2)	P2–O6 ⁱ	1.560(2)
$V_{\rm P1}$	5.02	$V_{\rm P2}$	5.05
P3–O16 ^{vii}	1.499(2)	P4027	1.491(2)
P3O28	1.513(2)	P4–O17 ^{vii}	1.502(2)
P3O22	1.559(2)	P4020	1.565(2)
P3O26	1.579(2)	P4–O19 ^{vii}	1.571(2)
V_{P3}	4.98	$V_{ m P4}$	5.05

Symmetry codes: (i) -*x*, -*y*+1, -*z*+1; (ii) *x*, *y*, *z*-1; (iii) -*x*+1, -*y*, -*z*+1; (iv) -*x*+1, -*y*+1, -*z*; (v)*x*+1, *y*, *z*; (vi) *x*, *y*-1, *z*; (vii) -*x*+1, -*y*+1, -*z*+1.

Bond valence parameters: Li⁺: 1.466 Å, B³⁺: 1.371 Å, P⁵⁺: 1.617 Å.

compounds	B:P	M/T	
(NH ₄)[B ₃ PO ₆ (OH) ₃] ·0.5H ₂ O	3:1	М	Acta Cryst. E 63, i185 (2007)
$Na_3B_6PO_{13}$	1:2	М	J. Solid State Chem., 180, 233-239 (2007)
Na ₃ BP ₂ O ₈	1:2	Т	J. Solid State Chem., 180, 233-239 (2007)
$(C_4H_{12}N_2)_3(Fe_6(H_2O)_4)(B_6P_{12}O_{50}(OH)_2)(H_2O)_2$	1:2	Т	Sci. Technol. Adv. Mat., 8, 399-405 (2007)
Ca _{0.5} (Ni(H ₂ O) ₂)(BP ₂ O ₈)(H ₂ O)	1:2	Т	Z. KristNew Cyst. St., 222, 1-2 (2007)
$CsSc(B_2P_3O_{11}(OH)_3)$	2:3	М	Inorg. Chem., 46, 7503-7508 (2007)
(NH ₄)(B ₃ PO ₆ (OH) ₃)(H ₂ O) _{0.5}	3:1	М	Acta Cryst. E., 63, i185 (2007)
$Zn[BPO_4(OH)_2]$	1:1	Т	ChemEur. J., 14, 1757-1761 (2008)
$Na_8 [Cr_4 B_{12} P_8 O_{44} (OH)_4] [P_2 O_7] (H_2 O)_n$	6:5	М	ChemEur. J., 14, 7212-7217 (2008)
$Ca_{0.5}Fe(H_2O)_2[BP_2O_8] H_2O$	1:2	Т	Z. KristNew Cyst. St., 223, 9-10 (2008)
KV[BP ₂ O ₈ (OH)]	1:2	Т	Z. KristNew Cyst. St., 223, 323-324 (2008)
LiCo(H ₂ O) ₂ [BP ₂ O ₈] H ₂ O	1:2	Т	Z. KristNew Cyst. St., 223, 333-334 (2008)
CaFe[BP ₂ O ₈ (OH) ₃]	1:2	Т	Z. KristNew Cyst. St., 223, 335-336 (2008)
BaFe(BP ₂ O ₈ (OH))	1:2	Т	Z. KristNew Cyst. St., 223, 337-338 (2008)
BaCo[BP ₂ O ₈ (OH)]	1:2	Т	Z. KristNew Cyst. St., 223, 339-340 (2008)
MBPO ₄ (OH) ₂ M=Mg, Ni	1:1	Т	J. Solid State Chem., 181, 1110-1115 (2008)
LiMg(H ₂ O) ₂ [BP ₂ O ₈]H ₂ O	1:2	Т	Acta Cryst. E, 64, I39-U126 (2008)
Na ₃ Pb(II)[B(O ₃ POH) ₄]	1:1	Т	Inorg. Chem., 47, 10193-10195 (2008)
$Na_{5}(NH_{4})Mn_{3}[B_{9}P_{6}O_{33}(OH)_{3}](H_{2}O)_{1.5}$	3:2	М	Acta Cryst. E, 64, I82-U28 (2008)
Na ₂ (VB ₃ P ₂ O ₁₂ (OH))(H ₂ O) _{2.92}	3:2	М	Chem. Mater., 20, 4900-4905 (2008)
$(CH_3NH_3)_4[N(CH_3)_4](CoPO_4)_4[B_5O_6(OH)_4]$	5:4	М	Dalton Trans., 5287-5289 (2009)
$(C_4N_3H_{16})(C_4N_3H_{15})_{0.5}[Fe_2B_4P_7O_26(OH)_4]$	4:7	Т	J. Mater. Chem., 19, 4523-4528 (2009)
$CaCo(H_2O)[BP_2O_8(OH)] \cdot H_2O$	1:2	Т	Z. Anorg. Allg. Chem., 635, 614-617 (2009)
SrFe[BP ₂ O ₈ (OH) ₂]	1:2	Т	Z. Anorg. Allg. Chem., 635, 1153-1156 (2009)
$Cs_2Co_3(H_2O)_2[B_4P_6O_{24}(OH)_2]$	2:3	Т	Z. KristNew Cyst. St., 224, 1-2 (2009)
$(Co_{0.6}Mn_{0.4})_2(H_2O)[BP_3O_9(OH)_4]$	1:3	Т	Z. KristNew Cyst. St., 224, 371-372 (2009)
$LiCu_2BP_2O_8(OH)_2$	1:2	Т	Acta Cryst. E, 65, i40 (2009)
LiNi(H ₂ O) ₂ [BP ₂ O ₈]H ₂ O	1:2	Т	Acta Cryst. E, 65, i42 (2009)
$KMBP_2O_8 (M = Sr, Ba)$	1:2	Т	Inorg. Chem., 48, 6623-6629 (2009)
KNi ₅ [P ₆ B ₆ O ₂₃ (OH) ₁₃]	1:1	Т	Acta Cryst. C, 65, i94-i98 (2009)

 Table S5.
 Borophosphates reported in the literatures since 2007.

Na(H ₂ O)Mn(H ₂ O) ₂ (BP ₂ O ₈)	1:2	Т
$(NH_4)_4[H_2B_2P_4O_{16}]$	1:2	Т
$[Na_{11}K_5Cr_8B_4P_{12}O_{70}H_8]^{15}$	1:3	Т
$(NH_4)_7Co_4(H_2O)[B_2P_4O_{15}(OH)_2]_2[H_2PO_4][HPO_4]$	2:5	Т
NaSc[BP ₂ O ₆ (OH) ₃][(HO)PO ₃]	1:3	Т
$Pb_4\{Co_2[B(OH)_2P_2O_8](PO_4)_2\}Cl$	1:4	Т
$Li_3V_2[BP_3O_{12}(OH)][HPO_4]$	1:4	Т
$(Ga_{0.71}B_{0.29})PO_4$	0.29:1	Т
$Sr_{10}P_{5.50}B_{1.50}O_{26}$	1.5:5.5	T,L
M_2 B(PO ₄) ₃ M =Fe, In	1:3	М
$Fe_2[BP_3O_{12}]$	1:3	М

$K(Fe,Al)[BP_2O_8(OH)],$	1:2
Rb(Al,Fe)[BP ₂ O ₈ (OH)]	1:2
$M(II)(H_2O)_2[B_2P_2O_8(OH)_2]H_2O$ ($M(II) = Fe, Co, Ni)$	1:1
$Cs_2Cr_3(BP_4O_{14})(P_4O_{13})$	1:8
CsFe(BP ₃ O ₁₁)	1:3
Zn ₃ (BO ₃)(PO ₄)	1:1
$(NH_4)_6[Mn_3B_6P_9O_{36}(OH)_3]\cdot 4H_2O$	2:3
Ti[BP ₂ O ₇ (OH) ₃]	1:2
$Na_6H_2Co_3B_2P_5O_{22}Cl$	2:5
$K_5H_2Mn_2B_2P_5O_{21}$	2:5
$N_8H_{36}Co_2B_4P_8O_{34}\\$	1:2
$C_{3}H_{13}N_{2}MnB_{2}P_{3}O_{13}$	2:3
$C_{3}H_{13}N_{2}FeB_{2}P_{3}O_{13}$	2:3
$C_4 H_{13} N_2 Fe B_2 P_3 O_{13}$	2:3
$AgMg(H_2O)_2[BP_2O_8]H_2O$	1:2
K ₃ <i>Ln</i> [OB(OH) ₂] ₂ [HOPO ₃] ₂ (<i>Ln</i> =Yb, Lu)	1:1
$(Ag_{0.57}Ni_{0.22})Ni(H_2O)_2[BP_2O_8]$	1:2
$C_4 H_{24} B_4 Co_2 N_4 O_{27} P_6$	2:3
$Th_2[BO_4][PO_4]$	1:1
$LiZn(H_2O)_2(BP_2O_8)(H_2O)$	1:2

	Т	Cystallogr. Rrep., 54(1), 13-18 (2009)
	Т	Dalton Trans., 39, 1713-1715 (2010)
	Т	Dalton Trans., 39, 7262-7265 (2010)
	Т	Dalton Trans., 39, 10571-10573 (2010)
	Т	Z. Anorg. Allg. Chem., 636, 19-22 (2010)
	Т	Z. Anorg. Allg. Chem., 636, 1454-1460 (2010)
	Т	Z. KristNew Cyst. St., 225, 3-4 (2010)
1	Т	Acta Cryst. E, 66, i4 (2010)
5.5	T,L	J. Solid State Chem., 183, 658-661 (2010)
	М	Acta Cryst. E., 66, i63-i63 (2010)
		J. Solid State Chem., 183, 1108-1113 (2010)
	М	Acta Cryst. E, 66, I63-U103 (2010)
	Т	Cystallogr. Rrep., 55, 760-768 (2010)
	Т	
	Т	Inorg. Chim. Acta, 363, 4299-4306 (2010)
	Т	Inorg. Chem., 49, 2550-2556 (2010)
	Т	Inorg. Chem., 49, 2550-2556 (2010)
	М	Acta Cryst. E, 67, i3 (2011)
	Т	Dalton T., 40, 2549-2554 (2011)
	Т	Crystengcomm, 13, 7185-7188 (2011)
	Т	Inorg. Chem., 50, 1073-1078 (2011)
	Т	Inorg. Chem., 50, 1073-1078 (2011)
	Т	Inorg. Chem., 50, 1073-1078 (2011)
	Т	Solid State Sci., 13, 757-761 (2011)
	Т	Solid State Sci., 13, 757-761 (2011)
	Т	Solid State Sci., 13, 757-761 (2011)
	Т	Acta Cryst. E, 67, i39 (2011)
	М	J. Solid State Chem., 184, 1517-1522 (2011)
	Т	Acta Cryst. E, 67, i44 (2011)
	Т	J. Solid State Chem., 184, 2538-2542 (2011)
	Т	Can. Mineral., 49, 1211-1220 (2011)
	Т	Journal of Henan Polytechnic University (Natural Science) (2011), 30(1), 100-103

$(H_3O)Mg(H_2O)_2(BP_2O_8)(H_2O)$	1:2	Т	Journal of Henan Polytechnic University (Natural Science) (2011), 30(1), 100-103
$H_{37}B_4Mn_4N_7O_{43}P_{10}\\$	2:5	Т	Micropor. Mesopor. Mater. 147, 73-78 (2012)
$(Ag_{0.79}Co_{0.11})Co(H_2O)_2[BP_2O_8]0.67H_2O$	1:2	Т	Acta Cryst. E, 68, i3 (2012)
$Ba_{5}[(UO_{2})(PO_{4})_{3}(B_{5}O_{9})]nH_{2}O$	5:3	М	Chem. Commun., 48, 3479-3481 (2012)
KMnBP ₂ O ₇ (OH) ₂	1:2	Т	Eur. J. Inorg. Chem., 3032-3038 (2012)
KCo(H ₂ O) ₂ BP ₂ O ₈ _0.48H ₂ O	1:2	Т	Acta Cryst. C, 68, i55 (2012)
$K_{0.17}Ca_{0.42}Co(H_2O)_2BP_2O_8_H_2O$	1:2	Т	Acta Cryst. C, 68, i55 (2012)
$\operatorname{Bi} M_2 \operatorname{BP}_2 \operatorname{O}_{10} (M = \operatorname{Co}, \operatorname{Ni})$	1:2	Т	Inorg. Chem., 51, 8842-8847 (2012)
$Li_2Cs_2B_2P_4O_{15}$	1:2	Т	ChemEur. J., 18, 12046-12051 (2012)
LiK ₂ BP ₂ O ₈	1:2	Т	ChemEur. J., 18, 12046-12051 (2012)
$Li_3M_2BP_4O_{14}$ (<i>M</i> =K, Rb)	1:4	Т	ChemEur. J., 18, 12046-12051 (2012)
Na ₃ Cd ₃ B(PO ₄) ₄	1:4	Т	Inorg. Chem., 51, 10870-10875 (2012)
$K(Mn(H_2O)_2(BP_2O_8))(H_2O)$	1:2	Т	Z. KristNew Cyst. St., 227(1), 3-4 (2012)
$Na_{13}(H_3O)_2[B_6P_{11}O_{42}(OH)_2]Cl_2$ H ₂ O	6:11	Т	Crystengcomm. 15, 2048-2051 (2013)
LiCu ₂ [BP ₂ O ₈ (OH) ₂]	1:2	Т	Dalton Trans., 42, 6298-6301 (2013)
RbPbBP ₂ O ₈	1:2	Т	Crystengcomm., 15, 4956-4962 (2013)
KPbBP ₂ O ₈	1:2	Т	Eur. J. Inorg. Chem., 3185-3190 (2013)
Ba ₁₁ B ₂₆ O ₄₄ (PO ₄) ₂ (OH) ₆	13:1	М	J. Solid State Chem., 203, 166-173 (2013)
$Mn_3(OH_2)[B(OH)_4][PO_4]$	1:1	Т	Z. Kristallogr., 228, 509-519 (2013)
KNi ₅ [P ₆ B ₆ O ₂₃ (OH) ₁₃]	1:1	Т	Z. Kristallogr., 228, 509-519 (2013)
$Na_{0.45}K(MgNi,Al)Ni_2(Ni,Al,Mg_2)_2[P_6B_6O_{24}(OH)_{12}]$	1:1	Т	Z. Kristallogr., 228, 509-519 (2013)
Li ₃ BP ₂ O ₈	1:2	Т	Dalton Trans., 43, 2294-2300 (2014)
Cu ₃ [B ₂ P ₃ O ₁₂ (OH) ₃]	1:2	Т	J. Solid State Chem., 210, 60-64 (2014)

Fig. S1 Complex impedance plots for a polycrystalline Li₂B₃PO₈ sample at 583, 603, and 618 K.

Fig. S2 Arrhenius plots of the conductivities of $Li_2B_3PO_8$ and $Li_3BP_2O_8$ ^{S2} measured by the AC impedance method

(S2) T. Hasegawa and H. Yamane, Dalton. Trans., 2014, 43, 2294.