Electronic Supplementary Information

A new thiacalix[4]arene-fluorescein based probe for detection of CN⁻ and Cu²⁺ ions and construction of a sequential logic circuit

Neetu Sharma, Shahi Imam Reja, Vandana Bhalla and Manoj Kumar*

Department of Chemistry, UGC-Centre for Advanced Studies-1, Guru Nanak Dev University, Amritsar-143005, Punjab, India

Email Address: <u>mksharmaa@yahoo.co.in</u>

- S3 Instruments and quantum yield calculation
- S4 Synthetic routes
- **S5** ¹H NMR spectrum of compound **3** in DMSO-d₆
- **S6** 13 C NMR spectra of compound **3** in DMSO-d₆
- S7 Mass spectrum of compound 3
- **S8** UV-vis spectra of **3** in the presence of various cations in CH₃CN:H₂O (8:2, v/v) buffered with HEPES, pH = 7.0.
- **S9** UV-vis spectra of **3** in the presence of CN^{-} and other anions in $CH_3CN:H_2O$ (8:2, v/v) buffered with HEPES, pH = 7.0.
- **S10** Fluorescence spectra of receptor **3** in the presence of different metal ions in $CH_3CN:H_2O$ (8:2, v/v) buffered with HEPES, pH = 7.0.
- S11 Fluorescence spectra of 3 in the presence of CN^- and other various anions in $CH_3CN:H_2O$ (8:2, v/v) buffered with HEPES, pH = 7.0.
- **S12** ¹H NMR titration of compound **3** with CN⁻ (TBACN) (DMSO-d₆, 500 MHz)
- **S13** ¹³C NMR of compound **3** and **3**a (cyanide adduct) (DMSO-d₆, 500 MHz)

- **S14** Mass spectra of Cyanide –Adduct (MALDI-TOF)
- **S15** UV-vis spectra of adduct **3a** in presence of different metal ions in CH₃CN:H₂O (8:2, v/v) buffered with HEPES, pH = 7.0.
- S16 Fluorescence spectra of adduct **3a** in presence of different metal ions in $CH_3CN:H_2O$ (8:2, v/v) buffered with HEPES, pH = 7.0.
- **S17** Bar diagram showing selectivity/competitive selectivity of adduct **3a** towards Cu²⁺ ions in CH₃CN:H₂O (8:2, v/v)
- **S18** Mass analysis of Cyanide-adduct + Cu²⁺ complex (MALDI-TOF)
- **S19** SPECFIT data of **3a** adduct on Cu^{2+} ions binding.
- **S22** Bar diagram showing selectivity/competitive selectivity of receptor **3** towards CNions in CH₃CN:H₂O (8:2, v/v)
- S23 Detection limit of 3 for CN⁻ ions at 528 nm.
- S24 UV-vis spectra of $3+CN^++Cu^{2+}$ in presence of CN⁻ ions in CH₃CN:H₂O (8:2, v/v) buffered with HEPES, pH = 7.0.
- S25 Fluorescence spectra of $3+CN^++Cu^{2+}$ in the presence of CN^- ions in $CH_3CN:H_2O$ (8:2, v/v) buffered with HEPES, pH = 7.0.
- **S26** Reversibility changes in absorbance spectra of receptor **3** on sequential addition of CN^{-} and Cu^{2+} in $CH_3CN:H_2O$ (8:2, v/v) buffered with HEPES, pH = 7.0.
- S27 ¹H NMR spectrum of compound 2
- S28 Mass spectrum of compound 2

General Experimental Procedure and quantum yield calculation:

All reagents were purchased from Aldrich and were used without further purification. Acetonitrile (AR grade) was used to perform analytical studies. UV-vis spectra were recorded on a SHIMADZU UV-2450 spectrophotometer, with a quartz cuvette (path length, 1 cm). The cell holder was thermostatted at 25 °C. The fluorescence spectra were recorded with a SHIMADZU 5301 PC spectrofluorimeter. ¹H was recorded on a Bruker-AVANCE-II FT NMR-AL 500 MHz spectrophotometer using CDCl₃, DMSO-d₆ as solvent and tetramethylsilane SiMe₄ as internal standards. Mass spectra were recorded on a Bruker MicroTof QII mass spectrometer and MALDI-TOF. UV-vis studies were performed in CH₃CN and HEPES buffer (pH = 7.0). Data are reported as follows: chemical shifts in ppm (δ), multiplicity (s = singlet, br = broad, d = doublet, t = triplet, m = multiplet), coupling constants *J* (Hz), integration, and interpretation. Silica gel 60 (60–120 mesh) was used for column chromatography. Fluorescence quantum yield¹ was determined by using optically matching solution of fluorescence (Φ_{fr} = fluorescein) as standard at an excitation wavelength of 490 nm and quantum yield is calculated using the equation:

$$\Phi_{\rm fs} = \Phi_{\rm fr} \times \frac{1 - 10^{-ArLr}}{1 - 10^{-AsLs}} \times \frac{N_{\rm s}^2}{N_{\rm r}^2} \times \frac{D_{\rm s}}{D_{\rm r}}$$

 Φ_{fs} and Φ_{fr} are the radiative quantum yields of sample and the reference respectively, A_s and A_r are the absorbance of the sample and the reference respectively, D_s and D_r the respective areas of emission for sample and reference. L_s and L_r are the lengths of the absorption cells of sample and reference solutions.

1 (*a*) Deams, J. N.; Grosby, G. A. J. Phys. Chem., 1971, **75**, 991; (*b*) D. Magde, R. Wong and P. G. Seybold, *Photochem. Photobiol.*, 2002, **75**, 327–334.

Synthetic routes

Synthetic Scheme

¹H NMR spectra of Compound **3** (DMSO-d₆, 500 MHz)

Mass spectra of Compound 3 (MALDI-TOF)

Figure 1. Absorption spectra of probe **3** (5.0 μ M) upon addition of various cations: Cu²⁺, Ag⁺, Co²⁺, Ni²⁺, Zn²⁺, Cd²⁺, Hg²⁺, Na⁺, K⁺, Li⁺, Mg²⁺, Be²⁺, Ca²⁺ (100 equiv) in CH₃CN/H₂O (8:2, v/v) buffered with HEPES, pH = 7.0.

Figure 2. Absorption spectra of probe **3** (5.0 μ M) upon addition of various different anions: F⁻, Cl⁻, Br⁻, I⁻, Ac⁻, NO₃⁻, H₂PO₄⁻, SO₄²⁻, CN⁻ (0-25 equiv) in CH₃CN/H₂O (8:2, v/v) buffered with HEPES, pH = 7.0.

Figure 3. Fluorescence spectra of **3** (5.0 μ M) upon addition of metal ions: Cu²⁺, Ag⁺, Co²⁺, Ni²⁺, Zn²⁺, Cd²⁺, Hg²⁺, Na⁺, K⁺, Li⁺, Mg²⁺, Be²⁺, Ca²⁺ (100 equiv) in CH₃CN/H₂O (8:2, v/v) buffered with HEPES, pH = 7.0; $\lambda_{ex} = 490$ nm.

Figure 4. Fluorescence spectra of **3** (5.0 μ M) upon addition of (0-25 equiv) of various different anions: F⁻, Cl⁻, Br⁻, I⁻, Ac⁻, NO₃⁻, H₂PO₄⁻, CN⁻, SO₄²⁻ in CH₃CN/H₂O (8:2, v/v) buffered with HEPES, pH = 7.0; $\lambda_{ex} = 490$ nm.

¹H NMR titration of compound **3** with CN⁻ (TBACN) (DMSO-d₆, 500 MHz)

¹³C NMR of compound **3** and **3**a (cyanide adduct) (DMSO-d₆, 500 MHz)

Mass spectra of Cyanide –Adduct (MALDI-TOF)

Figure 5. Absorption spectra of adduct **3a** upon addition of various different metal ions: Cu^{2+} , Ag^+ , Co^{2+} , Ni^{2+} , Zn^{2+} , Cd^{2+} , Hg^{2+} , Na^+ , K^+ , Li^+ , Mg^{2+} , Be^{2+} , Ca^{2+} (0-44 equiv) in CH₃CN/H₂O (8:2, v/v) buffered with HEPES, pH = 7.0.

Figure 6. Fluorescence spectra of adduct **3a** (5.0 μ M) in response to the addition of different metal ions (Cu²⁺, Ag⁺, Co²⁺, Ni²⁺, Zn²⁺, Cd²⁺, Hg²⁺, Na⁺, K⁺, Li⁺, Mg²⁺, Be²⁺, Ca²⁺) (44 equiv each) in CH₃CN/H₂O (8:2, v/v); $\lambda_{ex} = 490$ nm.

Figure 7. Fluorescence response of adduct **3a** towards various metal ions (44 equiv) in CH₃CN/H₂O (8:2, v/v); $\lambda_{ex} = 490$ nm. Bars represent the emission intensity ratio (I/I₀) (I₀ = initial fluorescence intensity at 528 nm; I = final fluorescence intensity at 528 nm after the addition of metal ions).

Mass analysis of Cyanide-adduct + Cu²⁺ complex (MALDI-TOF)

SPECFIT data of Cu²⁺ binding with 3a adduct

[PROGRAM]

Name = SPECFIT

Version = 3.0

[FILE]

Name = 20% WATER -ACN.FAC

Path = C:\Program Files\SPECFIT\DATA\

Date = 24-Oct-07

Time = 2:30:12 AM

Ncomp = 2

Nmeas = 44

Nwave = 321

[FACTOR ANALYSIS]

Tolerance = 1.000E-09

Max.Factors = 10

Num.Factors = 6

Significant = 3

Eigen Noise = 9.388E-01

Exp't Noise = 9.388E-01

Eigenvalue Square Sum Residual Prediction

1 9.238E+07 1.565E+05 3.329E+00 Data Vector

2 1.343E+05 2.225E+04 1.255E+00 Data Vector

3 9.807E+03 1.245E+04 9.388E-01 Data Vector

4 2.675E+03 9.770E+03 8.318E-01 Probably Noise

5 1.469E+03 8.302E+03 7.668E-01 Probably Noise

6 5.998E+02 7.702E+03 7.386E-01 Probably Noise

[MODEL]

Date = 24-Aug-07

Time = 2:51:04 AM

Model = 0

Index = 3

Function = 1

Species = 3

Params = 3

[SPECIES]	[COLORED]	[FIXED]	[SPECTRUM]
100	False	False	
010	True	False	
210	True	False	

[SPECIES]	[FIXED]	[PARAMETER]	[ERROR]
100	True	0.00000E+00	+/-	0.00000E+00
010	True	0.00000E+00	+/-	0.00000E+00
210	False	9.58070E+00	+/-	5.03060E-02

[CONVERGENCE]

Iterations = 7

Convergence Limit = 1.000E-04

Convergence Found = 1.170E-05

Marquardt Parameter = 0.0

Sum(Y-y)² Residuals = 9.08231E+05

Std. Deviation of Fit(Y) = 8.01927E+00

[STATISTICS]

Experimental Noise = 9.388E-01 Relative Error Of Fit = 9.9564% Durbin-Watson Factor = 0.3837 Goodness Of Fit, Chi^2 = 7.297E+01 Durbin-Watson Factor (raw data) = None Goodness Of Fit, Chi^2 (raw data) = None

[COVARIANCE]

6.756E-03

[CORRELATION]

1.000E+00

[END FILE]

Figure 8. Fluorescence response of **3** (5.0 μ M) to various anions (25 equiv) in CH₃CN/H₂O (8:2, v/v); $\lambda_{ex} = 490$ nm. Bars represent the emission intensity ratio (I/I₀) (I₀ = initial fluorescence intensity at 528 nm; I = final fluorescence intensity at 528 nm after the addition of anions). Blue bars represent selectivity (I/I₀) of **3** upon addition of different anions; red bars represent competitive selectivity of probe **3** towards CN⁻ ions (25 equiv) in the presence of other anions (25 equiv).

Calculations for detection limit:

Figure 9. Figure showing the fluorescence intensity at 528 nm as a function of CN⁻ ions concentration (M).

The detection limit was calculated based on the fluorescence titration. To determine the S/N ratio, the emission intensity of receptor **3** without CN^- was measured by 10 times and the standard deviation of blank measurements was determined. The detection limit is then calculated with the following equation:

 $DL = 3 \times SD/S$

Where SD is the standard deviation of the blank solution measured by 10 times; S is the slope of the calibration curve.

From the graph we get slope (S) = 409999.9, and SD value is 0.02612

Thus using the formula we get the Detection Limit (DL) = 1.911×10^{-7} M i.e. probe 3 can detect CN⁻ in this minimum concentration through fluorescence method.

Figure 10. Absorption spectra of **3-CN--Cu²⁺** upon the addition of CN⁻ions (0-30 equiv) in CH₃CN/H₂O (8:2, v/v) buffered with HEPES, pH = 7.0.

Figure 11. Fluorescence spectra of **3-CN--Cu**²⁺ upon the addition of CN- anions (0-30 equiv) in CH₃CN/H₂O (8:2, v/v) buffered with HEPES, pH = 7.0; $\lambda_{ex} = 490$ nm.

Figure 12. Reversibility changes in absorbance spectrum of compound 3 upon the sequential addition of CN^{-} and Cu^{2+} ions.

Mass spectrum of compound 2:

