Supplementary Information for:

Temperature Dependent Iodide Oxidation

by MLCT Excited States

Atefeh Taheri[†] and Gerald J. Meyer*^{†§}

†Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore,

Maryland, 21218, United States

§Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North

Carolina, 27509, United States

* Email: gjmeyer@email.unc.edu

Figure S.1. A) Transient absorption spectrum (black points) observed 1 μ s after pulsed 532 nm laser excitation of [Ru(bpy)₂(deeb)]²⁺ in 75 mM iodide/CH₃CN solutions. The red line is a simulation based on a 1:1 mixture of [Ru(bpy)₂(deeb)]⁺ and I₂⁻⁻. (Inset) Extinction coefficient spectra for ([Ru(bpy)₂(deeb)]⁺ - [Ru(bpy)₂(deeb)]²⁺) (green) and I₂⁻⁻ (blue). B) Transient absorption spectrum (black points) observed 0.5 μ s after pulsed 532 nm laser excitation of [Ru(bpy)₂(deebq)]²⁺ in 100 mM iodide/CH₃CN solutions. The red line is a simulation based on a 1:1 mixture of [Ru(bpy)₂(deebq)]²⁺ in 100 mM iodide/CH₃CN solutions. The red line is a simulation based on a 1:1 mixture of [Ru(bpy)₂(deebq)]⁺ and I₂⁻⁻.

Figure S.2 Absorption spectra of A) $[Ru(bpy)_2(deeb)]^{2+}$ and B) $[Ru(bpy)_2(deebq)]^{2+}$ under steady state visible light irritation in presence of triethylamine in acetonitrile. The arrows indicate the direction of increased photolysis time. Insets) Extinction coefficient spectra of the indicated compounds in acetonitrile.

Photoluminescence Quenching at Different Temperatures (25-50°C)

Figure S.3. Time resolved photoluminescence decays monitored at 620 nm for $[\text{Ru}(\text{deeb})(\text{bpy})_2]^{2+*}$ in acetonitrile at 50°C (left) and 45°C (right) as a function of increased [TBAI]. Insets show Stern–Volmer plot for lifetime quenching from which $K_{\text{SV}} = 27.4 \pm 0.2 \times 10^3$ and $23.3 \pm 0.3 \times 10^3$ M⁻¹ for the mentioned temperatures respectively were abstracted.

Figure S.4. Time resolved photoluminescence decays monitored at 620 nm for $[\text{Ru}(\text{deeb})(\text{bpy})_2]^{2+*}$ in acetonitrile at 40°C (left) and 35°C (right) as a function of increased [TBAI]. Insets show Stern–Volmer plot for lifetime quenching from which $K_{\text{SV}} = 19.2 \pm 0.2 \times 10^3$ and $15.3 \pm 0.2 \times 10^3$ M⁻¹ for the mentioned temperatures respectively were abstracted.

Figure S.5. Time resolved photoluminescence decays monitored at 620 nm for $[\text{Ru}(\text{deeb})(\text{bpy})_2]^{2+*}$ in acetonitrile at 30°C (left) and 25°C (right) as a function of increased [TBAI]. Insets show Stern–Volmer plot for lifetime quenching from which $K_{\text{SV}} = 12.0 \pm 0.3 \times 10^3$ and $9.4 \pm 0.2 \times 10^3$ M⁻¹ for the mentioned temperatures respectively were abstracted.

Figure S.6. Time resolved photoluminescence decays monitored at 700 nm for $[Ru(deebq)(bpy)_2]^{2+*}$ in acetonitrile at 40°C (left) and 35°C (right) as a function of increased [TBAI]. Insets show Stern–Volmer plot for lifetime quenching from which $K_{SV} = 27.4 \pm 0.2 \times 10^3$ and $23.3 \pm 0.3 \times 10^3$ M⁻¹ for the mentioned temperatures respectively were abstracted.

Figure S.7. Time resolved photoluminescence decays monitored at 700 nm for $[Ru(deebq)(bpy)_2]^{2+*}$ in acetonitrile at 30°C (left) and 25°C (right) as a function of increased [TBAI]. Insets show Stern–Volmer plot for lifetime quenching from which $K_{SV} = 27.4 \pm 0.2 \times 10^3$ and $23.3 \pm 0.3 \times 10^3$ M⁻¹ for the mentioned temperatures respectively