Polyoxometalate-Based Complex with Visible-Light Photochromism as Electrocatalyst for Generating Hydrogen from Water

Yun Gong, ^{*,a} Yong Xi Yang, ^a Miao Miao Zhang, ^a Xiao Lin Gao, ^aJun Li Yin ^a and

Jian Hua Lin^{*,a,b}

^aDepartment of Applied Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, P. R. China Tel: +86-023-65106150

E-mail: gongyun7211@cqu.edu.cn

^bZhejiang University, Hangzhou 310058, P. R. China Tel: +86-0571-88981583

E-mail: jhlin@cqu.edu.cn; jhlin@zju.edu.cn; jhlin@pku.edu.cn

Determination of Faradaic Efficiency

Controlled potential electrolyses were conducted in a 50 mL 0.5 M Na₂SO₄ solution at an applied potential of \Box -1.4 V vs SCE (η = -0.76 V) for 0.5 hour. The pH change of the solution during the electrolysis was recorded with a pH meter. Assuming 100% Faradaic efficiency, the theoretical pH change over time can be calculated by the equation of pH = 14 + lg { Σ (It)/(FV)}, where I = current (A), t = time (s), F = Faraday constant (96485 C/mol), V = solution volume (0.05 L). ¹ The amount of H₂ evolved was determined using gas chromatography (GC, 7890A, thermal conductivity detector (TCD), Ar carrier, Agilent). The theoretical (assuming 100% Faradic efficiency) hydrogen volume is based on the amount of consumed charge during the course of electrolysis.

Complex 1			
Mo(1)-O(5)	1.697(5)	Mo(1)-O(2)	2.431(4)
Mo(2)-O(7)	1.701(5)	Mo(2)-O(1)	2.315(5)
Mo(3)-N(1)	2.243(6)	Mo(3)-O(11)	1.684(6)
Mo(3)-O(1)	2.317(5)	Mo(4)-O(2)#1	2.227(5)
Mo(4)-O(12)	1.700(6)	Mo(4)-O(4)#1	2.382(5)
O(2)#1-Mo(1)-O(3)	73.46(18)	O(5)-Mo(1)-O(2)	179.2(2)
O(8)-Mo(2)-O(2)	72.93(18)	O(9)-Mo(2)-O(1)	165.3(2)
O(3)-Mo(3)-O(1)	69.63(17)	O(11)-Mo(3)-O(1)	167.3(2)
O(3)-Mo(3)-N(1)	79.18(19)	O(6)-Mo(3)-N(1)	160.9(2)
Complex 2			
Co(1)-N(8)	1.946(9)	Co(1)-N(6)	1.980(9)
Co(1)-N(1)	1.953(9)	Co(1)-N(13)	1.977(8)
O(4)-P(1)	1.513(6)	O(1)-P(1)	1.554(6)
Mo(3)-O(12)	1.693(7)	Mo(4)-O(4)#2	2.368(6)
N(1)-Co(1)-N(6)	81.2(4)	N(13)-Co(1)-N(6)	178.7(4)
N(1)-Co(1)-N(13)	98.5(4)	N(8)-Co(1)-N(1)	177.4(4)
N(8)-Co(1)-N(13)	81.4(4)	N(8)-Co(1)-N(6)	98.9(4)
O(5)-Mo(2)-O(3)#2	70.4(3)	O(7)-Mo(4)-O(7)#3	173.8(4)
O(2)-P(1)-O(3)	108.1(4)	O(4)-P(1)-O(2)	111.7(4)

Table S1 Selected bond lengths (Å) and angles (°) for complexes 1 and 2 $\,$

Symmetry transformations used to generate equivalent atoms:

#1 -x+3/2, -y+1/2, -z+1 #2 -x+1, y, -z+3/2 #3 -x+2, y, -z+3/2

Fig. S1 The powder XRD patterns for complexes 1 (a) and 2 (b).

Fig. S2 UV-vis absorption spectra at room temperature for the free organic ligands and complexes **1-2** in the solid state.

Fig. S3 The diffuse reflectance spectra of complex 1 and 2 in Kubelka–Munk units. F(R) is the Kubelka–Munk function, where $F(R) = (1-R)^2/2R$, R is the experimentally observed reflectance.

The formula for the calculation of band gap is as follows:

Band Gap energy = $hc/\lambda = 1240/\lambda eV$

h = planks constant = 6.626×10^{-34} Joules \cdot sec

 $c = Speed of light = 3.0 \times 10^8 meter/sec$

 $\lambda = \text{cut off wavelength (nm)}$

where $1eV = 1.6 \times 10^{-19}$ Joules (conversion factor)

 λ , the cut off wavelength, is obtained according to the diffuse reflectance spectrum {F(R) vs. wavelength, F(R) = (1-R)²/2R, R is the experimentally observed reflectance}.

Fig. S4 UV-vis absorption spectra at room temperature for the Na₂SO₄ solution of complex 1 before and after visible-light illumination ($\lambda > 400$ nm).

(a)

Fig. S5 CVs of the bare GCE in the 0.5 M Na_2SO_4 aqueous solution (40 mL) at a scan rate of 0.01 V·s⁻¹ in the absence (pink) and presence of 4 mg L1 (blue) or 4 mg complex 1 (red) (a); CVs of the GCE in the 0.5 M Na_2SO_4 solution (40 mL) at different sweep rates (b).

Fig. S6 CVs of the GCE in 0.5 M Na_2SO_4 solution (40 mL) in the presence of 4 mg L1 at different sweep rates.

Fig. S7 CVs of the GCE in 0.5 M Na_2SO_4 solution (40 mL) in the presence of 4 mg complex 1 at different sweep rates.

•

Fig. S8 Current intensity (*i*) / overpotential (η) diagrams (a) for the HER at the bare GCE in the absence and presence of 4 mg complex 1 or 2 in 0.5 M Na₂SO₄ solution (40 mL) at sweep rates of 0.01 V·s⁻¹; Tafel plots of *logi* against overpotential η for the HER (The

linear part of the Tafel curves denoted in black dotted lines with the intercept at the y axis) (b).

Fig. S9 Controlled potential electrolysis of the bare GCE in the 0.5 M Na₂SO₄ aqueous solution (40 mL) in the absence (current density = 4.0 mA/cm²) (pink) and presence of complex 1 with (red) or without visible-light illumination (current density = 9.9 mA/cm²) (blue) or in the presence of complex 2 (current density = 5.2 mA/cm^2) (green), showing charge buildup versus time with an applied potential of -1.4 V vs SCE (η = -0.76 V).

Fig. S10 Dozens of CVs of the bare GCE in the 0.5 M Na_2SO_4 aqueous solution (40 mL) at a scan rate of 0.05 V·s⁻¹ in the presence of 4 mg complex 1.

Fig. S11 UV absorption spectra at room temperature for the blank Na_2SO_4 solution (black), the Na_2SO_4 solution of complex 1 (green) and the solution of complex 1 after CV cycles (red).

(a)

Fig. S12 CVs of the bare GCE in the 0.5 M Na₂SO₄ aqueous solution (40 mL) at a scan rate of 0.01 V·s⁻¹ in the absence (pink) and presence of 4 mg complex **1** (red) or complex **2** (blue) (**a**); CVs of the bare GCE in the 0.5 M Na₂SO₄ aqueous solution (40 mL) at a scan rate of 0.01 V·s⁻¹ in the absence (pink) and presence of 4 mg L2 (blue) or 4 mg complex **1** (red) (**b**).

Fig. S13 CVs of the GCE in 0.5 M Na_2SO_4 solution (40 mL) in the presence of 4 mg complex 2 at different sweep rates.

Fig. S14 Dozens of CVs of the bare GCE in the 0.5 M Na_2SO_4 aqueous solution (40 mL) at a scan rate of 0.05 V·s⁻¹ in the presence of 4 mg complex 2.

Fig. S15 UV-vis absorption spectra at room temperature for the Na_2SO_4 solution of complex 2 before (green) and after CV cycles (red).

Fig. S16 Thermogravimetric curves of complexes 1 and 2.

References:

1 Y. J. Sun, J. P. Bigi, N. A. Piro, M. L. Tang, J. R. Long and C. J. Chang, *J. Am. Chem. Soc.*, **2011**, *133*, 9212.