Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2014

Supporting Information

Ultrasound-Assisted Approach to Synthesize Mn₃O₄/RGO Hybrids with High Capability for Lithium Ion Batteries

Yunqing Luo,* Shanshan Fan, Nongyi Hao, Shuangling Zhong and Wencong Liu*

College of Resources and Environment, Jilin Agricultural University, Changchun, 130118, P. R China

E-mail: <u>qyluo2014@163.com</u>; <u>chemliuwc@163.com</u>

Experimental Section:

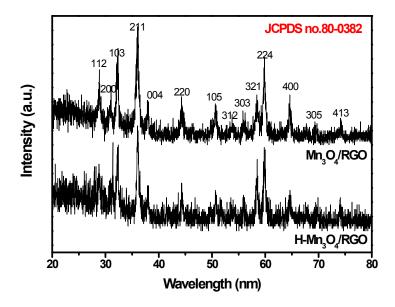
Synthesis of GO:

GO was synthesized from natural graphite powder according to a modified Hummers method.²⁵ Briefly, 0.9 g of graphite powder was added into a mixture of 7.2 mL of 98% H₂SO₄, 1.5 g of K₂S₂O₈, and 1.5 g of P₂O₅. The solution was kept at 80 °C for 4.5 h, followed by thorough washing with water. Thereafter, the as-treated graphite was put into a 250 mL beaker, to which 0.5 g of NaNO₃ and 23 mL of H₂SO₄ (98%) were then added while keeping the beaker in the ice bath. Subsequently, 3 g of KMnO₄ was added slowly. After 5 min, the ice bath was removed and the solution was heated up to and kept at 35 °C under vigorous stirring for 2 h, followed by the slow addition of 46 mL of water. Finally, 40 mL of water and 5mL of H₂O₂ was added, followed by water washing and filtration. The exfoliation of graphene oxide was then dispersed in ethylene glycol (5mg mL⁻¹) under ultrasonication for 2 h to yield a homogeneous suspension.

Synthesis of Mn₃O₄/RGO hybrids:

1 mmol $Mn(OAc)_2$ was dissolved in 10 ml water. Then 3 ml GO solution was dropped in followed by added 200 ul *Tert*-butylamine. After ultrasound treatment for 5 minutes, the products were purified by centrifugation and washed with water for three times.

Synthesis of H-Mn₃O₄/RGO hybrids:


The as-obtained Mn₃O₄/RGO was further hydrothermal treated in water at 180 °C for 12 h.

Characterization:

The X-ray diffraction patterns of the products were collected on a Rigaku-*D*/max 2500 V X-ray diffractometer with Cu-K_{α} radiation ($\lambda = 1.5418$ Å), with an operation voltage and current maintained at 40 kV and 40 mA. Transmission electron microscopic (TEM) images were obtained with a TECNAI G2 high-resolution transmission electron microscope operating at 200 kV. XPS measurement was performed on an ESCALAB-MKII 250 photoelectron spectrometer (VG Co.) with Al K_{α} X-ray radiation as the X-ray source for excitation.

Electrochemical measurements:

The test cell consisted of a working electrode and a lithium foil which were separated by a Celgard 2400 membrane. The electrolyte solution was prepared by dissolving 1 M LiPF6 in EC-DMC (1 : 1 w/w). The working electrodes were prepared by casting slurry containing 80 % active material, 10 % acetylene black and 10 % polyvinylidene fluoride (PVDF) onto a copper foil. After vacuum drying at 80 °C for about 24 h, the electrode disks were punched and weighed. Each electrode has approximately 1–3 mg of active material. Galvanostatic charge–discharge cycling tests were performed using a LAND CT2001A multi-channel battery testing system in the voltage range between 0.01 and 3 V at room temperature.

Fig. S1. XRD patterns of the Mn_3O_4/RGO and $H-Mn_3O_4/RGO$ hybrids. All the peaks correspond well with those of Mn_3O_4 with a tetragonal spinel structure (space group I41/amd, JCPDS no.80-0382).

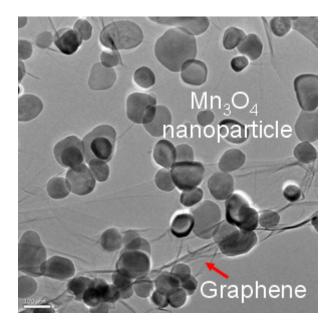


Fig. S2. TEM image of H-Mn₃O₄/RGO

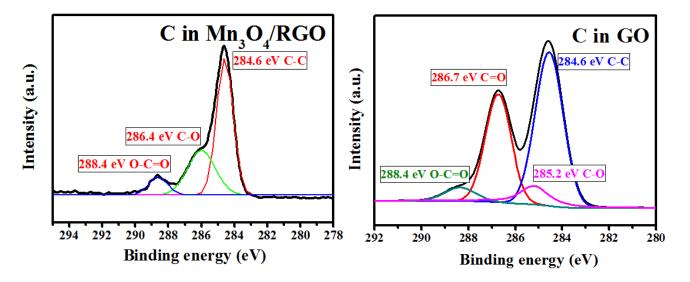


Fig. S3. The XPS spectra of C in Mn₃O₄/RGO and GO nanosheets.

Table S1. Typical Mn₃O₄ based anode materials for LIB applications

	Special particle shapes	Content of Mn ₃ O ₄ (wt %)	Specific capacity at low current density	Specific capacity at high current density	Reference
Bare Mn ₃ O ₄	sponge like powder	100	800 mA h g ⁻¹ after 40 cycles at 0.25 C		16
Mn₃O₄/graphene	nanoparticles	90	810 mA h g^{-1} after 40 cycles at 40 mA g^{-1}	351 mA h g^{-1} after 10 cycles at 1600 mA g^{-1}	9
Mn₃O₄/graphene	nanoparticles	81.2	900 mA h g^{-1} after 40 cycles at 50 mA g^{-1}	200 mA h g^{-1} after 10 cycles at 2000 mA g^{-1}	15
Mn₃O₄/graphene	needles	62.3	$675 \text{ mA h g}^1 \text{ after } 100 \text{ cycles at } 75 \text{ mA g}^1$		17
Mn₃O₄@carbon	nanorods	98.8	473 mA h g^{-1} after 50 cycles at 40 mA g^{-1}		18
Mn₃O₄/ordered mesoporous carbons	nanoparticles	20	802 mA h g ⁻¹ after 50 cycles at 100 mA g ⁻¹		19
Mn₃O₄/CNT	nanoparticles	42	592 mA h g ⁻¹ after 50 cycles at 100 mA g ⁻¹	387 mA h g ⁻¹ after 10 cycles at 1000 mA g ⁻¹	20

	C-C (%)	C-O (%)	C=O (%)	0-C=0	C/O
				(%)	
GO	48.6	8	35.8	7.6	1/0.58
Mn ₃ O ₄ /RGO	84.7	9.2	0	6.1	1/0.21

Table S2. Element analysis of GO and Mn₃O₄/RGO according to XPS results