Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2014

Supporting Information for:

Lead and tin β -diketiminato amido/anilido complexes: competitive nucleophilic reactivity at the β -diketiminato γ -carbon

Lisa A.-M. Harris,^a Eric C. Y. Tam,^a Martyn P. Coles,^b and J. Robin Fulton*^b

CONTENTS		PAGE
Fig S1	¹ H NMR spectrum of [(BDI)PbOC(NPh)(C{C(Me)N-2,6-iPr ₂ C ₆ H ₃ }{C(Me)C(NPh)(C(C(Me)N-2,6-iPr ₂ C ₆ H ₃)] (9)	e)N(H)- S3
Fig S2	²⁰⁷ Pb NMR spectrum of [(BDI)PbOC(NPh)(C{C(Me)N-2,6-iPr ₂ C ₆ H ₃ }{C(2,6-iPr ₂ C ₆ H ₃ })] (9)	(Me)N(H)- S3
Fig S3	¹³ C NMR spectrum of [(BDI)PbOC(NPh)(C{C(Me)N-2,6-iPr ₂ C ₆ H ₃ }{C(Me)C(C(Me)N-2,6-iPr ₂ C ₆ H ₃ })] (9)	le)N(H)- S4
Fig S4	¹³ C NMR spectrum of [(BDI)SnOC(NPh)(C{C(Me)N-2,6-iPr ₂ C ₆ H ₃ } {C(N 2,6-iPr ₂ C ₆ H ₃ })] (12)	Me)N(H)- S4
Fig S5	¹ H NMR spectrum of [(BDI)SnOC(NPh)(C{C(Me)N-2,6-iPr ₂ C ₆ H ₃ } {C(Me)C(C(Me)N-2,6-iPr ₂ C ₆ H ₃ })] (12)	le)N(H)- S5
Fig S6	¹¹⁹ Sn NMR spectrum of [(BDI)SnOC(NPh)(C{C(Me)N-2,6-iPr ₂ C ₆ H ₃ } {C 2,6-iPr ₂ C ₆ H ₃ })] (12)	(Me)N(H)- S5
Fig S7	Thermal ellipsoid plot of $[(BDI)Pb(N{iPr}_2)]$ (2)	S6
Fig S8	Thermal ellipsoid plot of [(BDI)Pb(NHPh)] (3)	S7
Fig S9	Thermal ellipsoid plot of $[(BDI)Pb(NH{2-iPr-C_6H_4})]$ (4)	S8
Fig S10	Thermal ellipsoid plot of $[(BDI)Pb(NH\{2,6-iPr_2-C_6H_3\})]$ (5)	S9
Fig S11	Thermal ellipsoid plot of $[IPb(\mu-NH(2,6-iPr_2C_6H_3)]_2$ (8)	S10
Fig S12	Thermal ellipsoid plot of $[(BDI)SnOC(NPh)(C\{C(Me)N-2,6-iPr_2C_6H_3\}$ $\{C(Me)N(H)-2,6-iPr_2C_6H_3\})]$ (12)	S11
Fig S13	Thermal ellipsoid plot of $[(BDI)Pb(OC {=NtBu} {NH(2,6-iPr_2-C_6H_3)})]$ (1	4) S12
Table S1	Data collection parameters [(BDI)Pb(OC{=N tBu }{NH(2,6- iPr_2 -C ₆ H ₃)})]	(14) S13

Fig S14	Thermal ellipsoid plot of $[C_6H_5CH=C\{(Me)CN-2,6-iPr_2C_6H_3\}_2]$ (15)	S14		
Table S2	Cartesian coordinates of optimized structure of (2)	S15		
Table S3	Cartesian coordinates of optimized structure of (5)	S17		
Table S4	Cartesian coordinates of optimized structure of $[(BDI)Sn(N{iPr}_2)]$ (10)	S20		
Table S5	Cartesian coordinates of optimized structure of			
	$[(BDI)Sn(NH\{2,6-iPr_2-C_6H_3\})] (11)$	S22		
Complete reference 49.				

Figure S2. ²⁰⁷Pb NMR spectrum of [(BDI)PbOC(NPh)(C{C(Me)N-2,6-iPr₂C₆H₃}{C(Me)N(H)-2,6-iPr₂C₆H₃})] (9)

-1099

Lead_207_01 Pb NMR

Figure S3. ¹³C NMR spectrum of [(BDI)PbOC(NPh)(C{C(Me)N-2,6-iPr₂C₆H₃}{C(Me)N(H)-2,6-iPr₂C₆H₃})] (9). L = BDI-H

Figure S4. ¹³C NMR spectrum of [(BDI)SnOC(NPh)(C{C(Me)N-2,6-iPr₂C₆H₃}{C(Me)N(H)-2,6-iPr₂C₆H₃})] (12)

Figure S5. ¹H NMR spectrum of [(BDI)SnOC(NPh)(C{C(Me)N-2,6-iPr₂C₆H₃}{C(Me)N(H)-2,6-iPr₂C₆H₃})] (12)

Figure S6. ¹¹⁹Sn NMR spectrum of [(BDI)SnOC(NPh)(C{C(Me)N-2,6-iPr₂C₆H₃}{C(Me)N(H)-2,6-iPr₂C₆H₃})] (12)

Figure S8. Thermal ellipsoid plot of [(BDI)Pb(NHPh)] (3).

Figure S12. Thermal ellipsoid plot of $[(BDI)SnOC(NPh)(C \{C(Me)N-2,6-iPr_2C_6H_3\})$

Figure S13. Thermal ellipsoid plot of $[(BDI)Pb(OC {=}NtBu \{ NH(2,6-iPr_2-C_6H_3) \})]$ (14).

Identification code mpc_lh602			
Empirical formula	C46 H68 N4 O Pb		
Formula weight	900.23		
Temperature	173(2) K		
Wavelength	0.71073 Å		
Crystal system	Orthorhombic		
Space group	<i>P c m n</i> (No.62)		
Unit cell dimensions	a = 9.3058(1) Å	α=90°.	
	b = 19.5694(3) Å	β= 90°.	
	c = 27.4022(4) Å	$\gamma = 90^{\circ}$.	
Volume	4990.19(12) Å ³		
Ζ	4		
Density (calculated)	1.20 Mg/m ³		
Absorption coefficient	3.413 mm ⁻¹		
F(000)	1848		
Crystal size	0.12 x 0.06 x 0.06 mm ³		
Theta range for data collection	1.49 to 27.50°.		
Index ranges	-12<=h<=8, -25<=k<=25, -35<	<=l<=35	
Reflections collected	64880		
Independent reflections	5878 [R(int) = 0.069]		
Completeness to theta = 27.50°	99.7 %		
Absorption correction	Semi-empirical from equivaler	nts	
Max. and min. transmission	0.8214 and 0.6848		
Refinement method	Full-matrix least-squares on F ²	2	
Data / restraints / parameters	5878 / 67 / 381		
Goodness-of-fit on F ²	1.338		
Final R indices [I>2sigma(I)]	R1 = 0.059, wR2 = 0.195		
R indices (all data) $R1 = 0.075$, $wR2 = 0.212$			
Largest diff. peak and hole 2.08 and -1.76 e.Å ⁻³			

Table S1.	Data collection	parameters for	[(BDI)Pb(O	C = NtBu	NH(2,6- <i>i</i> Pr ₂ -	$C_6H_3)$)] (14).
-----------	-----------------	----------------	------------	----------	------------------------------------	--------------------

Data collection KappaCCD, Program package WinGX, Abs correction MULTISCAN Refinement using SHELXL-97, Drawing using ORTEP-3 for Windows

The molecule lies on a mirror plane. The BDI ligand is disordered and was modelled over two positions with each being constrained to be equal. The hydrogen atom was located on N2; the N-H distance was restrained to be 0.91 Å. Due to the severe disorder, discussion of bond lengths and angles should be treated with care.

Table S2.Cartesian coordinates of optimized structure of $[(BDI)Pb(N\{iPr\}_2)]$ (2) at
B3LYP/LANL2DZ/6-31G* level.¹

Center	Aton	nic A	tomic	Coordinate	es (Angstroms)
Number	Nu	mber	Туре	X Y	Z
1	7	0	-1.490366	0.296002	-1.035057
2	7	0	1.603712	0.500616	-0.938251
3	7	0	-0.270365	-1.015186	1.950161
4	6	0	-1.199424	0.669352	-2.295479
5	6	0	0.093982	0.795023	-2.824986
6	1	0	0.123933	1.050304	-3.878597
7	6	0	1.364546	0.871185	-2.184964
8	6	0	-2.337708	0.949586	-3.267601
9	1	0	-2.838351	0.010058	-3.532094
10	1	0	-1.970174	1.411274	-4.186518
11	1	0	-3.100284	1.597715	-2.830829
12	6	0	2.469699	1.420759	-3.079901
13	1	0	3.392300	1.618030	-2.534145
14	1	0	2.142827	2.342664	-3.570804
15	1	0	2.686583	0.694646	-3.873349
16	6	0	-2.817542	0.509440	-0.530642
17	6	0	-3.149530	1.777314	0.022024
18	6	0	-4.442357	1.975610	0.521103
19	1	0	-4.709353	2.943630	0.935943
20	6	0	-5.393290	0.959159	0.503887
21	1	0	-6.389128	1.133154	0.902916
22	6	0	-5.056846	-0.280694	-0.027769
23	1	0	-5.800892	-1.073037	-0.042848
24	6	0	-3.783293	-0.527914	-0.557677
25	6	0	-2.146452	2.931470	0.068573
26	1	0	-1.152378	2.505523	-0.097718
27	6	0	-2.402184	3.964649	-1.049643
28	1	0	-3.405719	4.398561	-0.959240
29	1	0	-2.315478	3.522292	-2.046057
30	1	0	-1.675482	4.783816	-0.985202
31	6	0	-2.125876	3.650919	1.431825
32	1	0	-3.050818	4.211005	1.613073
33	1	0	-1.301399	4.373502	1.460294
34	1	0	-1.991654	2.950010	2.261228
35	6	0	-3.495017	-1.905537	-1.150966
36	1	0	-2.490783	-1.877569	-1.587748
37	6	0	-4.471341	-2.271852	-2.286834
38	1	0	-4.185367	-3.228135	-2.740863
39	1	0	-4.480404	-1.510492	-3.074206
40	1	Ō	-5.497702	-2.376552	-1.916507
41	6	Ō	-3.504391	-3.001786	-0.066779
42	1	Ō	-4.499628	-3.104574	0.381936
43	1	Ō	-2.801060	-2.770464	0.739878

44	1	0	-3.229319	-3.973349	-0.495613
45	6	0	2.896580	0.641356	-0.342237
46	6	0	3 893259	-0 347158	-0.546101
47	6	Õ	5 121965	-0 208469	0 114276
48	1	Õ	5 892537	-0 959885	-0.038211
49	6	Õ	5 377479	0 869207	0 952917
50	1	Õ	6 337480	0.958902	1 454422
51	6	Õ	4 392224	1 835026	1 146504
52	1	Õ	4 598432	2 674037	1 803188
53	6	Õ	3 145137	1 743554	0.519118
54	6	Õ	3 696937	-1 547688	-1 473031
55	1	Õ	2 693316	-1 485076	-1 904579
56	6	Õ	4 702004	-1 539801	-2 643979
57	1	Ő	4 652395	-0.606613	-3 213852
58	1	Ő	4 494770	-2 369751	-3 330316
59	1	Ő	5 731993	-1 655312	-2 286638
60	6	Ő	3 787588	-2 887352	-0 715457
61	1	0	4 780808	-3 031750	-0 274466
62	1	0	3 599786	-3 726213	-1 396642
63	1	0	3.056027	-2 942897	0.097652
64	6	0	2 089660	2.912097	0.736196
65	1	0	1 112596	2 330050	0.707542
66	6	0	2 213170	3 550684	2 088997
67	1	0	3 081551	4 220259	2.000777
68	1	0	2 302638	2 851314	2.114576
69	1	0	1 325204	4 169673	2.260585
70	6	Ő	2 106737	3 875802	-0 396765
71	1	0	3 084043	4 371476	-0 449429
72	1	Ő	1 347954	4 647380	-0.215521
73	1	0	1 900685	3 430140	-1 372505
74	6	Ő	-0.917223	0 137990	2 593399
75	1	Õ	-1 113893	0.856206	1 790788
76	6	Õ	-2 284571	-0 220028	3 212750
77	1	Õ	-2 948534	-0 648745	2 456585
78	1	Õ	-2 771960	0 671497	3 627754
79	1	0	-2.179447	-0.944872	4.029713
80	6	0	-0.036012	0.862623	3.631140
81	1	0	0 150388	0 240319	4 514460
82	1	0	-0.526727	1.780182	3.979506
83	1	0	0.930287	1.134275	3.197238
84	6	0	0.245956	-2.049669	2.866429
85	1	0	-0.217393	-1.884487	3.849141
86	6	0	1.773095	-1.972554	3.075485
87	1	0	2.307080	-2.183691	2.140080
88	1	0	2.110991	-2.702918	3.823161
89	1	0	2.078467	-0.976476	3.406368
90	6	0	-0.155187	-3.476566	2.445378
91	1	0	-1.241614	-3.563081	2.342857
92	1	0	0.180858	-4.210469	3.188588
93	1	0	0.300040	-3.763315	1.487986
94	82	0	0.057042	-1.247156	-0.163800

Table S3.Cartesian coordinates of optimized structure of $[(BDI)Pb(NH\{2,6-iPr_2-C_6H_3\})]$ (5) at
B3LYP/LANL2DZ/6-31G* level.¹

Center	Ator	nic At	tomic	Coordinate	s (Angstroms)
Number	Nu	mber	Туре	X Y	Z
1	82	0	-0.255077	0.055220	-0.825669
2	7	0	-1.787141	-0.679097	0.757389
3	7	0	0.056920	1.828135	0.681856
4	7	0	1.188349	-1.290770	0.136704
5	1	0	1.024908	-1.235246	1.136012
6	6	0	-1.762404	-0.311505	2.040279
7	6	0	-0.913391	0.671681	2.596051
8	1	0	-0.976826	0.749375	3.674419
9	6	0	-0.174063	1.711583	1.989854
10	6	0	-2.745481	-0.946760	3.011045
11	1	0	-2.560898	-0.610730	4.033171
12	1	0	-2.695647	-2.037389	2.984256
13	1	0	-3.771704	-0.673122	2.740526
14	6	0	0.316258	2.795567	2.937701
15	1	0	1.313310	3.147882	2.665183
16	1	0	0.335901	2.430039	3.967175
17	1	0	-0.349408	3.665465	2.903578
18	6	0	-2.790303	-1.602125	0.282620
19	6	0	-2.586721	-3.004969	0.370651
20	6	0	-3.579829	-3.857608	-0.128769
21	1	0	-3.432259	-4.932117	-0.062885
22	6	0	-4.744724	-3.365184	-0.706226
23	1	0	-5.502621	-4.047612	-1.081757
24	6	0	-4.925608	-1.990516	-0.805276
25	1	0	-5.832130	-1.604083	-1.263142
26	6	0	-3.964153	-1.090795	-0.327924
27	6	0	-1.329325	-3.635746	0.965617
28	1	0	-0.689756	-2.832394	1.336635
29	6	0	-1.640857	-4.584183	2.141803
30	1	0	-0.708035	-4.953870	2.583647
31	1	0	-2.217575	-5.456917	1.813652
32	1	0	-2.214127	-4.091437	2.934757
33	6	0	-0.525344	-4.388832	-0.112831
34	1	0	0.407535	-4.778897	0.310405
35	1	0	-0.261568	-3.727240	-0.941475
36	1	0	-1.094480	-5.235855	-0.514862
37	6	0	-4.228066	0.405022	-0.486415
38	1	0	-3.345082	0.942963	-0.128289
39	6	0	-5.423808	0.869537	0.369283
40	1	0	-5.567931	1.952574	0.273573
41	1	0	-5.271328	0.642779	1.430250
42	1	0	-6.353388	0.380337	0.055104
43	6	0	-4.441051	0.785095	-1.965446

44	1	0	-4.579061	1.866723	-2.069407
45	1	0	-5.328758	0.296784	-2.383442
46	1	0	-3.582602	0.491580	-2.580237
47	6	0	0.567186	3.063558	0.144775
48	6	0	1.949464	3.216596	-0.134058
49	6	0	2.392735	4.426219	-0.686188
50	1	0	3.451768	4.553950	-0.892667
51	6	0	1.513621	5.464230	-0.971757
52	1	0	1.881284	6.393853	-1.398152
53	6	0	0.157574	5.298782	-0.710267
54	1	0	-0.531354	6.107421	-0.940408
55	6	0	-0.340575	4.112850	-0.157732
56	6	0	2 983666	2 130972	0 156018
57	1	Ő	2,455679	1 238672	0 502991
58	6	Ő	3 772912	1 739883	-1 109452
59	1	Ő	4 416713	0.878552	-0.905312
60	1	0	4 407537	2 564024	-1 457226
61	1	0	3 103973	1 471623	-1 933738
62	6	0	3 962218	2 557852	1 260124
63	1	0	1 602308	1 7619/3	1.207124
6 <i>1</i>	1	0	3 115716	2 767206	2 212311
65	1	0	J.445710 4 516718	2.707200	0.086688
66	6	0	4.510/18	3.400880	0.980088
67	0	0	-1.043079	3.990984	0.073840
60	1	0	-2.044/02	5.023437	0.330992
00 60	0	0	-2.3/0/22	3.080730	1.033701
09	1 1	0	-3.443943	4.929913	1.22/049
/0 71	1	0	-2.254568	6.085958	0.015085
/1	l	0	-1.856422	5.060/88	1.999351
12	0	0	-2.61/13/	4.045608	-1.258056
/3	1	0	-3.693292	3.924230	-1.085130
/4 75	1	0	-2.289565	3.253053	-1.939602
15	l	0	-2.469533	5.003939	-1./69534
/6	6	0	2.515289	-1.640464	-0.12/2/4
//	6	0	2.930148	-2.00/591	-1.44189/
78	6	0	4.27/656	-2.295647	-1.682/58
79	l	0	4.585726	-2.555865	-2.692939
80	6	0	5.230349	-2.2/3309	-0.669901
81	l	0	6.272130	-2.497881	-0.881453
82	6	0	4.815452	-1.985209	0.629924
83	1	0	5.550045	-1.999388	1.429440
84	6	0	3.487517	-1.673298	0.928910
85	6	0	1.942975	-2.148354	-2.599343
86	1	0	0.932604	-2.047809	-2.188810
87	6	0	2.001615	-3.549673	-3.241639
88	1	0	1.224310	-3.653361	-4.009131
89	1	0	1.849338	-4.332638	-2.491445
90	1	0	2.967853	-3.733904	-3.725141
91	6	0	2.125971	-1.061494	-3.676412
92	1	0	1.380168	-1.169696	-4.474291
93	1	0	3.119906	-1.127873	-4.134689
94	1	0	2.028108	-0.052853	-3.258897
95	6	0	3.063834	-1.434690	2.379118

96	1	0	2.320299	-0.624142	2.391919
97	6	0	2.389756	-2.696357	2.966500
98	1	0	2.000144	-2.503601	3.974246
99	1	0	3.117455	-3.513983	3.033479
100	1	0	1.561660	-3.045832	2.341002
101	6	0	4.196625	-0.980722	3.314504
102	1	0	3.783941	-0.710194	4.293584
103	1	0	4.726604	-0.108605	2.917636
104	1	0	4.932079	-1.775820	3.484152

Table S4.Cartesian coordinates of optimized structure of $[(BDI)Pb(N{iPr}_2)]$ (10) at
B3LYP/LANL2DZ/6-31G* level.¹

Center	nter Atomic Atomic		tomic	Coordinates (Angstroms)		
Number	Nui	mber	Туре	X Y	Z	
1	50	0	0.053293	-1.329605	-0.161074	
2	7	0	-1.469145	0.114174	-1.014148	
3	7	0	1.555940	0.317307	-0.943817	
4	7	0	-0.194761	-1.018293	1.867492	
5	6	0	-1.212500	0.449240	-2.295398	
6	6	0	0.070260	0.555699	-2.848014	
7	1	0	0.094389	0.773885	-3.909818	
8	6	0	1.335575	0.653640	-2.205954	
9	6	0	-2.368662	0.695939	-3.251826	
10	1	0	-2.866108	-0.254498	-3.479288	
11	1	0	-2.017957	1.131230	-4.189959	
12	1	0	-3.128120	1.352276	-2.822867	
13	6	0	2.448218	1.172511	-3.105591	
14	1	0	3.364433	1.393250	-2.558678	
15	1	0	2.123747	2.073455	-3.635212	
16	1	0	2.674165	0.416324	-3.867644	
17	6	0	-2.792076	0.349779	-0.495132	
18	6	0	-3.117013	1.642052	0.002253	
19	6	0	-4.404450	1.863426	0.505745	
20	1	0	-4.666514	2.849076	0.880065	
21	6	0	-5.356687	0.848902	0.541142	
22	1	0	-6.348064	1.041278	0.942849	
23	6	0	-5.028845	-0.411279	0.054794	
24	1	0	-5.775408	-1.200940	0.074929	
25	6	0	-3.761129	-0.684080	-0.477511	
26	6	0	-2.121302	2.803939	-0.021226	
27	1	0	-1.127658	2.381110	-0.196841	
28	6	0	-2.415252	3.790633	-1.171916	
29	1	0	-3.420301	4.218811	-1.072781	
30	1	0	-2.349635	3.311020	-2.152491	
31	1	0	-1.695385	4.618189	-1.158030	
32	6	0	-2.074158	3.578624	1.310962	
33	l	0	-3.000352	4.136596	1.491/46	
34	l	0	-1.25/213	4.309839	1.288972	
35	l	0	-1.912654	2.914646	2.165273	
36	6	0	-3.494434	-2.081862	-1.033937	
37	l	0	-2.483884	-2.091032	-1.455939	
38	6	0	-4.468851	-2.452511	-2.170709	
39	1	0	-4.198417	-3.424509	-2.5999/1	
40	1	0	-4.45/2/6	-1./10495	-2.9/6116	
41	l	0	-5.500154	-2.52/628	-1.806593	
42	6	0	-3.543491	-3.152810	0.073125	
43	1	0	-4.546896	-5.22/365	0.509409	

44	1	0	-2.844833	-2.919128	0.881723
45	1	0	-3.280456	-4.137405	-0.331977
46	6	0	2.851004	0.476125	-0.344043
47	6	0	3.845568	-0.520078	-0.517995
48	6	0	5.067866	-0.368486	0.152197
49	1	0	5.836741	-1.126387	0.027076
50	6	0	5.320565	0.730444	0.962889
51	1	0	6.275090	0.827928	1.473369
52	6	0	4.343367	1.712168	1.111436
53	1	0	4.552279	2.572499	1.738661
54	6	0	3.101786	1.610611	0.473996
55	6	0	3.671304	-1.728621	-1.440698
56	1	0	2.668463	-1.687002	-1.875680
57	6	0	4.687470	-1.702447	-2.603004
58	1	0	4.637815	-0.766515	-3.168037
59	1	0	4,493235	-2.529709	-3.296256
60	1	0	5.714868	-1.812634	-2.236382
61	6	0	3 781644	-3 068451	-0 687742
62	1	Õ	4 764780	-3 186752	-0 217129
63	1	Õ	3.640631	-3.905815	-1.381620
64	1	Õ	3 022547	-3 152934	0.095371
65	6	Õ	2 064899	2 724189	0 629698
66	1	Ő	1 079448	2 243985	0.644617
67	6	Ő	2 216517	3 540401	1 926255
68	1	0 0	3 092169	4 199783	1 888413
69	1	Ő	2 310222	2 905348	2 811564
70	1	Ő	1 338253	4 181428	2.063341
71	6	Ő	2.085251	3 698750	-0 568025
72	1	Ő	3 074203	4 161950	-0 671861
73	1	Ő	1 352871	4 501642	-0.417162
74	1	Ő	1 842753	3 202341	-1 509537
75	6	Ő	-0 758243	0.187317	2 497699
76	1	Õ	-0 928286	0.897936	1 683040
77	6	Õ	-2 125885	-0 075420	3 161017
78	1	Õ	-2.838510	-0 475139	2 434270
79	1	Ő	-2 544099	0 850489	3 576127
80	1	0	-2 038421	-0 791742	3 987271
81	6	Õ	0 195413	0 873865	3 496317
82	1	Ő	0 329161	0 280891	4 408735
83	1	Õ	-0 203927	1 849309	3 800886
84	1	Ő	1 179558	1 028597	3 046642
85	6	Õ	0 269980	-2.055041	2.817976
86	1	Ő	-0 112077	-1 777003	3 808302
87	6	Ő	1 805130	-2 115507	2.938612
88	1	Ő	2 258093	-2.455931	1 999935
89	1	Ő	2 113989	-2.813720	3 728144
90	1	Ő	2 222516	-1 130778	3 165971
91	6	Õ	-0.300424	-3.455581	2.528889
92	1	Õ	-1.394719	-3.435635	2.522060
93	1	Õ	0.024324	-4.168343	3.297661
94	1	Õ	0.037213	-3.844619	1.560747

Table S5.Cartesian coordinates of optimized structure of $[(BDI)Sn(NH{2,6-iPr_2-C_6H_3})]$ (11)at B3LYP/LANL2DZ/6-31G* level.¹

Center	Atom	ic A	tomic	Coordinate	s (Angstroms)
Number	Nun	nber	Туре	X Y	Z
1	50	0	-0.278020	0.100466	-0.818487
2	7	0	-1.786312	-0.574041	0.692828
3	7	0	0.130912	1.789550	0.617073
4	7	0	1.069114	-1.245263	0.084338
5	1	0	0.929524	-1.218484	1.087914
6	6	0	-1.768199	-0.220083	1.980759
7	6	0	-0.874282	0.712829	2.550207
8	1	0	-0.934859	0.791695	3.628400
9	6	0	-0.076875	1.697920	1.934639
10	6	0	-2.787486	-0.820322	2.933477
11	1	0	-3.802822	-0.672687	2.551861
12	1	0	-2.716602	-0.361280	3.921340
13	1	0	-2.646103	-1.899033	3.041083
14	6	0	0.517998	2.743667	2.861838
15	1	0	1.578425	2.901180	2.648518
16	1	0	0.407026	2.446515	3.907025
17	1	0	0.023827	3.711408	2.727757
18	6	0	-2.818538	-1.463965	0.202727
19	6	0	-2.690847	-2.870609	0.345114
20	6	0	-3.706096	-3.687856	-0.168935
21	1	0	-3.616899	-4.765792	-0.066555
22	6	0	-4.820202	-3.155803	-0.807654
23	1	0	-5.596541	-3.810959	-1.193881
24	6	0	-4.927814	-1.777800	-0.952756
25	1	0	-5.796877	-1.361766	-1.454598
26	6	0	-3.940696	-0.911928	-0.465082
27	6	0	-1.492013	-3.547360	1.007026
28	1	0	-0.845503	-2.768470	1.417059
29	6	0	-1.899289	-4.488326	2.159872
30	1	0	-1.004802	-4.872669	2.663851
31	1	0	-2.464384	-5.352827	1.793082
32	1	0	-2.519778	-3.987413	2.911243
33	6	0	-0.658937	-4.325177	-0.030675
34	1	0	0.227910	-4.764008	0.441554
35	1	0	-0.317472	-3.665414	-0.830948
36	1	0	-1.242619	-5.139714	-0.476425
37	6	0	-4.132837	0.590024	-0.663150
38	1	0	-3.226219	1.096389	-0.319080
39	6	0	-4.326216	0.946910	-2.150145
40	1	0	-4.404011	2.032211	-2.275640
41	1	0	-5.240533	0.501683	-2.558955
42	1	0	-3.483198	0.593860	-2.753930
43	6	0	-5.304019	1.126480	0.184795

44	1	0	-5.404743	2.211431	0.059438
45	1	0	-5.155170	0.923062	1.251289
46	1	0	-6.253925	0.666479	-0.112225
47	6	0	0.680154	3.010693	0.070996
48	6	0	2.061326	3.118319	-0.226670
49	6	0	2.538177	4.320687	-0.767179
50	1	0	3.597259	4.413606	-0.991119
51	6	0	1.692083	5.393371	-1.020894
52	1	0	2.085690	6.316743	-1.437614
53	6	0	0.334815	5.270216	-0.743356
54	1	0	-0.329495	6.104718	-0.952032
55	6	0	-0.196608	4.092514	-0.204508
56	6	Õ	3 060960	1 990429	0.016530
57	1	Õ	2 513774	1 121914	0 392002
58	6	0 0	3 761201	1 565403	-1 289845
59	1	0 0	4 379327	0.678076	-1 120009
60	1	0	4 407839	2 363348	-1 674928
61	1	0	3 034863	1 324781	-2 072601
62	6	0	4 116050	2 373671	1 073871
63	1	0	4.110050	1 541297	1 229591
64	1	0	3 661071	2 617986	2 040287
65	1	0	1 703454	2.017980	0.755825
66	6	0	1 703088	1 02/813	0.755825
67	1	0	-1.703088	4.024813	0.041813
68	1	0	-1.937030	<i>J</i> .041461 <i>A</i> 166101	1 270670
60	1	0	-2.464078	4.100101	-1.2/90/0 1 100224
70	1	0	-3.302127	4.000943	-1.100334
70	1	0	-2.163003	5.400900	-2.003/33
/1 72	1	0	-2.513571	5.092616	-1./41900
12	0	0	-2.160276	3.082010	1.03/443
13	1	0	-3.233090	4.9/4324	1.243042
74 75	1	0	-2.008338	0.100294	0.067602
15	1	0	-1.003381	4.988223	2.018333
70 77	0	0	2.337743	-1.708023	-0.219145
11	0	0	2.707471	-2.125590	-1.33/213
/8 70	0	0	4.024005	-2.31/311	-1.803930
/9	I C	0	4.283811	-2.813430	-2.81/133
8U 01	0	0	4.999834	-2.33/400	-0.814914
81 92	l (0	0.015549	-2.804883	-1.048109
82	0	0	4.641327	-2.222176	0.489/10
83	l	0	5.391808	-2.283493	1.2/1/55
84 95	6	0	3.34918/	-1.802975	0.813954
85	0	0	1.692116	-2.212447	-2.6/5989
80	l	0	0.699661	-2.005842	-2.262039
8/	6	0	1.622190	-3.634162	-3.2/1689
88	1	0	0.822598	-3.695869	-4.020356
89	1	0	1.422699	-4.3/9510	-2.494/28
90 01		0	2.559436	-3.912603	-3./6/150
91	6	0	1.951/64	-1.181359	-3./90/7/
92	1	0	1.191318	-1.260095	-4.577708
93	1	0	2.933114	-1.340/99	-4.253660
94	l	0	1.930221	-0.155750	-3.40/211
95	6	0	2.987270	-1.508204	2.271392

96	1	0	2.303139	-0.647407	2.288492
97	6	0	2.247048	-2.708263	2.906665
98	1	0	1.907739	-2.470046	3.922819
99	1	0	2.917668	-3.573819	2.966105
100	1	0	1.374810	-3.012027	2.318217
101	6	0	4.177613	-1.118110	3.163698
102	1	0	3.814916	-0.799047	4.147946
103	1	0	4.756759	-0.295094	2.732552
104	1	0	4.858180	-1.961171	3.329641

Complete reference 49:

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cuiq, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe and J. A. Pople, *Gaussian 03, Revision C. 02*, (2004).