Supporting Information

A Cu (II) complex of an imidazolium based ionic liquid: synthesis, X-ray structure and application in selective electrochemical sensing of guanine

Amanpreet Singh, Ajnesh Singh and Narinder Singh* *E-mail: <u>nsingh@iitrpr.ac.in</u>.*

Figure S1: ¹H NMR spectrum of compound 1

Figure S2: ¹³C NMR spectrum of compound 1

Figure S3. FT-IR spectra of Copper complex R1

Table S1: Crystal data and refinement parameters of compound R1

Compound	
Empirical Formula	C24 H34 Cl4 Cu2 N8 O30
M _w	1183.47
Temperature [K]	150(2) K
Crystal description	Needles, Bluish- green
Crystal System	Orthorhombic
Space group	Pnnm
a / [Å]	12.9191(5)
b / [Å]	14.6740(6)
c / [Å]	11.9279(4)
$a/\beta/\gamma/$ [°]	90.00
V [Å ³]	2261.23(15)
Ζ	2
D _c [Mg m ⁻³]	1.738
μ / [mm ⁻¹]	1.283
Reflections collected	37305
Data / restraints / parameters	2327 / 10 / 207
Unique reflections, [R _{int}]	2327 [0.0255]
$GOF = S_{all}$	1.047
Final <i>R</i> indices	
$R_1, WR_2[I > 2\sigma I]$	0.0584, 0.1747
R_1 , wR ₂ (all data)	0.0644, 0.1814
$\Delta \rho max / \Delta \rho min [Å^3]$	0.986, -0.976

Table S2. Selected bond lengths and angles (Å,°) for compound R1

Bond lengths(Å)								
Cu(1)-O(1)	1.968(2)	Cu(1)-O(3)	2.163(5)	Cu(1)-Cu(1)#1	2.6416(11)			
Cu(1)-O(2)#1	1.966(3)	Cu(1)-O(1)#3	1.968(2)	O(1)-C(6)	1.258(4)			
O(2)-C(6)	1.255(4)	C(5)-C(6)	1.519(5)					
Bond angles(°)								
O(2)#1-Cu(1)-O(1)	168.48(11)	O(2)#2-Cu(1)-O(1)	89.12(12)	O(2)#1-Cu(1)-O(3)	92.57(11)			
O(2)#1-Cu(1)-O(2)#2	88.69(16)	O(1)-Cu(1)-O(1)#3	90.78(15)	O(1)-Cu(1)-O(3)	98.83(11)			
O(2)#1-Cu(1)-Cu(1)#1	85.46(7)	C(6)-O(1)-Cu(1)	123.5(2)	O(2)-C(6)-O(1)	127.0(3)			

D-H···A	D…A∕ Å	H····A/ Å	D-H····A/º
C3-H3AO1 ⁱ	3.277(4)	2.503(2)	140.9(2)
C4-H4BO1 ⁱ	3.346(7)	2.465(2)	152.5(4)

Table S3. Hydrogen bonding parameters (Å, °) of compound R1

Equivalent positions: (i) -x-1/2,+y-1/2,-z-1/2

Figure S4. Comparison of LSV profile of complex **R1** (10 μM), Guanine and Change in LSV profile upon interaction with guanine in DMSO: H₂O (50:50)

Figure S5. Comparison of CV profile of complex **R1** (10 μM), Guanine and Change in cyclic voltametry profile upon interaction with guanine in DMSO: H₂O (50:50)

Figure S6. Comparison of DPV profile of complex **R1** (10 μM), Guanine and Change in DPV profile upon interaction with guanine in DMSO: H₂O (50:50)

Figure S7. Calibration curve concentration of guanine and $I_{-0.23}/I_0$ in case Differential Pulse Voltammetry titration

Figure S8. Changes in the CV profile of R1 (10 μ M) upon addition of various derivatives of guanine (20 μ M) in DMSO: H₂O (50:50)

Figure S9. Change in reduction potential of R1 in CV profile upon addition of guanine in presence of various interfering species

S.	Receptor	Analytical	Detection	Reference
No		method	limit	
1.	Cobalt(II) phthalocyanine-modified	DPV	550 nM	1
	carbon paste electrode			
2.	Cobalt hexacyanoferrate	CV	340 nM	2
3.	β-Cyclodextrin incorporated carbon nanotube	DPV	200 nM	3
4.	Aptamers	Fluorescence	6.7 µM	4
5.	Carbon ionic liquid-modified electrode	CV	78.7 nM	5
6.	Carbon screen-printed electrode	DPV	200 nM	6
7.	Cu(II) complex of imidazolium ionic liquid (present work)	DPV, CV	45 nM	-

Table S4: Comparison of binding ability of different receptors with guanine

References:

- 1. A. Abbaspour, M. A. Mehrgardi and R. Kia, J. Electroanal. Chem., 2004, 568, 261.
- 2. A. Abbaspour and M. A. Mehrgardi, Anal. Chem. 2004, 76, 5690.

- 3. Z. Wang, S. Xiao and Y. Chen, J. Electroanal. Chem. 2006, 589, 237.
- 4. X. Fan, F. Lin, Y. Zhang, J. Zhao, H. Li and S. Yao, New J. Chem, 2012, 36, 2260-2265.
- 5. W. Sun, Y. Li, Y. Duan and K. Jiao, Biosens. Bioelectron. 2008, 24, 988.
- 6. A. Abbaspour, L. Baramakeh and S. M. Nabavizadeh, *Electrochim. Acta*, 2007, 52, 4798.