Spin-Orbit Effects in Square-Planar Pt(II) Complexes with Bidentate and Terdentate Ligands: Theoretical Absorption/Emission Spectroscopy

Christophe Gourlaouen,^a and Chantal Daniel^{a*}

Cartesian cooordinates of the optimized geometries of the five complexes $[Pt(bpy)Cl_2] \mathbf{1}$, $[Pt(ppy)Cl_2]^{-} \mathbf{2}$, $[Pt(tpy)Cl]^{+} \mathbf{3}$ $[Pt(phbpyR)Cl] \mathbf{4}$ and $[Pt(dpybR)Cl] \mathbf{5}$ (R = CH₃) in the electronic ground state

Structure of 1

С	0.015869	1.716152	3.464381
С	0.000611	2.976451	2.885945
С	0.002303	1.923637	0.731437
С	0.020704	0.598319	2.646901
С	0.002303	1.923637	-0.731437
С	0.000611	2.976451	-2.885945
Н	-0.005599	3.868671	-3.494940
С	0.015869	1.716152	-3.464381
С	0.020704	0.598319	-2.646901
Н	0.023304	1.587765	4.535309
Н	-0.005599	3.868671	3.494940
Н	0.028940	-0.403645	3.044053
Н	0.023304	1.587765	-4.535309
Н	0.028940	-0.403645	-3.044053
Pt	0.000644	-0.880236	0.000000
Ν	0.012956	0.695206	-1.310570
Ν	0.012956	0.695206	1.310570
С	-0.006533	3.077131	-1.504424
Н	-0.017334	4.045604	-1.033048
С	-0.006533	3.077131	1.504424
Н	-0.017334	4.045604	1.033048
Cl	-0.025544	-2.560947	-1.650675
Cl	-0.025544	-2.560947	1.650675

Structure of 2

С	1.718996	-3.474781	0.000000
С	2.985204	-2.900284	0.000000
С	1.945172	-0.730710	0.000000
С	0.609775	-2.648550	0.000000
С	1.920753	0.724896	0.000000
С	2.989433	2.890694	0.000000
Н	3.886723	3.494837	0.000000
С	1.729043	3.487143	0.000000
С	0.570388	2.710837	0.000000
Н	1.584557	-4.545315	0.000000
Н	3.873985	-3.515724	0.000000
Н	-0.396012	-3.037063	0.000000
Н	1.649665	4.566498	0.000000
Н	-0.390966	3.202518	0.000000
Pt	-0.883774	-0.007743	0.000000
С	0.630675	1.312209	0.000000
Ν	0.711810	-1.310191	0.000000
С	3.080915	1.507665	0.000000
Н	4.057488	1.044003	0.000000
С	3.093278	-1.521489	0.000000
Н	4.064514	-1.052900	0.000000

Cl	-2.618173	1.609644	0.000000	
Cl	-2.644997	-1.806193	0.000000	

Structure of 3

Pt	-0.008180	0.921410	0.000000
Cl	-0.011612	3.279121	0.000000
Ν	-0.008597	0.575713	-2.023176
Ν	-0.008597	0.575713	2.023176
С	-0.007155	-1.672671	1.184710
С	-0.007597	-3.060662	1.207092
Н	-0.008182	-3.598366	2.140536
С	-0.007759	-3.748266	0.000000
С	-0.007597	-3.060662	-1.207092
Н	-0.008182	-3.598366	-2.140536
С	-0.007155	-1.672671	-1.184710
С	-0.008304	-0.756676	-2.333697
С	-0.010404	-1.176584	-3.651549
Н	-0.010563	-2.229522	-3.881879
С	-0.012238	-0.231808	-4.669666
Н	-0.013719	-0.550174	-5.701538
С	-0.012162	1.113806	-4.340676
Н	-0.013549	1.879778	-5.099700
С	-0.010352	1.482511	-3.003119
Н	-0.010372	2.514300	-2.689271
С	-0.010352	1.482511	3.003119
Н	-0.010372	2.514300	2.689271
С	-0.012162	1.113806	4.340676
Н	-0.013549	1.879778	5.099700
С	-0.012238	-0.231808	4.669666
Н	-0.013719	-0.550174	5.701538
С	-0.010404	-1.176584	3.651549
Н	-0.010563	-2.229522	3.881879
С	-0.008304	-0.756676	2.333697
Η	-0.008388	-4.827768	0.000000
Ν	-0.006575	-1.039109	0.000000

Structure of 4

Pt	-0.008706	0.979849	-0.041700
Cl	-0.010508	3.346390	-0.008642
Ν	-0.008869	0.586419	2.086218
С	-0.008137	-1.638227	1.184038
С	-0.007599	-3.026168	1.217354
Н	-0.007527	-3.556256	2.154956
С	-0.007286	-3.725468	0.015744
С	-0.007773	-3.044719	-1.191407
Н	-0.007889	-3.586821	-2.123243
С	-0.008239	-1.651482	-1.189177
С	-0.009152	-0.743695	-2.335500
С	-0.010776	-1.192799	-3.657246
Н	-0.011109	-2.251432	-3.876971
С	-0.011973	-0.278413	-4.701856
Н	-0.013222	-0.626761	-5.725209
С	-0.011635	1.085284	-4.418001
Н	-0.012514	1.800160	-5.229968
С	-0.010368	1.540591	-3.098295
Н	-0.010385	2.604144	-2.905833
С	-0.009830	1.463292	3.090830
Н	-0.009418	2.504423	2.802955
С	-0.011410	1.066129	4.419631
Н	-0.012162	1.810167	5.200470
С	-0.012226	-0.290418	4.709394
Н	-0.013747	-0.637278	5.732264
С	-0.011134	-1.205751	3.666163
Н	-0.011856	-2.263845	3.870871
С	-0.009189	-0.744348	2.357222

Н	-0.006884	-4.805511	0.024312
Ν	-0.008076	-1.001715	-0.003156
С	-0.009303	0.648938	-2.026220

Structure of 5

Pt	-0.004448	0.925233	0.000000
Cl	-0.006621	3.423409	0.000000
Ν	-0.006520	0.553771	-2.042221
Ν	-0.006520	0.553771	2.042221
С	-0.005111	-1.684879	1.216637
С	-0.006634	-3.082480	1.209001
Н	-0.011818	-3.640036	2.136127
С	-0.004190	-3.790085	0.000000
С	-0.006634	-3.082480	-1.209001
Н	-0.011818	-3.640036	-2.136127
С	-0.005111	-1.684879	-1.216637
С	-0.009547	-0.781383	-2.368187
С	-0.016389	-1.173646	-3.700317
Н	-0.019956	-2.224937	-3.943540
С	-0.018044	-0.216594	-4.703055
Н	-0.023194	-0.519351	-5.740411
С	-0.012751	1.128384	-4.356294
Н	-0.013145	1.904679	-5.105253
С	-0.007411	1.472878	-3.014653
Н	-0.004262	2.500569	-2.685102
С	-0.007411	1.472878	3.014653
Н	-0.004262	2.500569	2.685102
С	-0.012751	1.128384	4.356294
Н	-0.013145	1.904679	5.105253
С	-0.018044	-0.216594	4.703055
Н	-0.023194	-0.519351	5.740411
С	-0.016389	-1.173646	3.700317
Н	-0.019956	-2.224937	3.943540
С	-0.009547	-0.781383	2.368187
С	-0.002503	-1.007983	0.000000
С	0.027736	-5.300279	0.000000
Н	-0.465467	-5.707206	0.881643
Н	1.055906	-5.670117	0.000000
Н	-0.465467	-5.707206	-0.881643

Table S1. TD-DFT/B3LYP (without SOC) transition energies (in eV) to the low-lying singlet and triplet excited states of $[Pt(bpy)Cl_2] \mathbf{1}$ and $[Pt(tpy)Cl]^+ \mathbf{3}$ and associated oscillator strengths f.

	Singlet	transition	f		Triplet	transition
	energies				energies	
$[Pt(bpy)Cl_2]$ 1		3.13		0.003367		2.81
		3.34		0.004277		2.86
		3.40		0.176000		2.98
		3.40		0.001137		3.00
		3.53		0.000240		3.05
		3.53		0.001389		3.22
		3.56		0.000036		3.28
		3.61		0.001135		3.31
		4.02		0.403000		3.47
		4.10		0.000688		3.95
		4.24		0.284000		4.03
		4.36		0.000255		4.09

4.47	0.013550	4.10
4.47	0.171000	4.22
4.57	0.314100	4.35
4.57	0.000042	4.38
4.63	0.015380	4.44
4.63	0.000257	4.47
4.75	0.000118	4.52
4.85	0.000125	4.56
4.90	0.005373	4.61
5.12	0.049880	4.62
5.13	0.009014	4.73
5.18	0.017930	4.83
5.33	0.000320	4.88
5.37	0.000272	5.09
5.38	0.000002	5.12
5.39	0.187700	5.26
5.55	0.015910	5.30
5.62	0.000108	5.31
5.72	0.000046	5.41
5.83	0.019520	5.44
5.87	0.004438	5.48
5.87	0.001697	5.49
5.98	0.002975	5.55
5.99	0.155400	5.59
6.01	0.000007	5.72
6.06	0.450300	5.76
6.13	0.000006	5.77
6.14	0.062660	5.80
3.24	0.075550	2.78
3.35	0.020200	2.93
3.35	0.008036	3.12
3.44	0.000001	3.25
3.60	0.024890	3.39
3.80	0.712400	3.39
3.90	0.000001	3.40
3.93	0.000002	3.51
3.99	0.172400	3.54
3.99	0.001062	3.65
4.07	0.080320	3.75
4.15	0.045870	3.88
4.26	0.000003	3.89
4.30	0.235600	3.95
4.58	0.043250	3.97
4.60	0.006322	4.11
4.64	0.154100	4.19

 $[Pt(tpy)Cl]^+ \underline{3}$

4.85	0.138100	4.29
4.88	0.000192	4.40
4.90	0.000838	4.51
4.92	0.000659	4.57
4.93	0.000016	4.68
4.94	0.011620	4.69
4.96	0.740800	4.85
4.98	0.083800	4.87
4.99	0.000094	4.88
5.14	0.000000	4.90
5.32	0.000366	4.91
5.32	0.073900	4.94
5.35	0.001303	4.95
5.36	0.070650	5.03
5.44	0.174900	5.04
5.46	0.007046	5.18
5.60	0.008009	5.20
5.62	0.000085	5.26
5.70	0.000079	5.31
5.71	0.000252	5.41
5.72	0.013940	5.44
5.75	0.000000	5.54
5.81	0.022680	5.56

Table S2. TD-DFT/B3LYP (without SOC) transition energies (in eV) to the low-lying singlet and triplet excited states of $[Pt(ppy)Cl_2]^2$. $[Pt(phbpyR)Cl] \underline{4}$ and $[Pt(dpybR)Cl] \underline{5}$ (R = CH₃) and associated oscillator strengths f (allowed transitions by symmetry only: A' and A'').

	Singlet	transition	f		Triplet	transition
	energies				energies	
[Pt(ppy)Cl ₂] ⁻ 2		3.13		0.036740		2.76
		3.49		0.011200		3.18
		3.59		0.188700		3.27
		3.70		0.000176		3.39
		3.80		0.000369		3.44
		3.85		0.056490		3.48
		3.98		0.018440		3.49
		4.04		0.001125		3.57
		4.08		0.264000		3.69
		4.12		0.163400		3.72
		4.26		0.028800		3.93
		4.28		0.309500		4.00
		4.44		0.000109		4.24
		4.49		0.000011		4.24
		4.65		0.020760		4.40

4.79	0.049390	4.42
4.90	0.007532	4.48
4.91	0.482200	4.61
5.08	0.000076	4.79
5.11	0.000610	4.84
5.13	0.113200	4.95
5.16	0.033730	5.00
5.29	0.073590	5.03
5.32	0.024210	5.05
5.37	0.000677	5.10
5.40	0.019400	5.12
5.57	0.002497	5.25
5.57	0.023040	5.29
5.61	0.000182	5.33
5.65	0.016570	5.39
5.67	0.000083	5.43
5.70	0.086260	5.44
5.84	0.088140	5.56
5.85	0.424100	5.58
5.94	0.001174	5.62
5.97	0.230200	5.66
6.00	0.016140	5.68
6.01	0.017640	5.78
6.02	0.006294	5.83
6.10	0.097160	5.89
2.77	0.004346	2.54
3.12	0.005125	2.72
3.16	0.056850	2.92
3.23	0.003563	3.02
3.43	0.195800	3.15
3.61	0.350200	3.25
3.73	0.207500	3.47
3.77	0.002502	3.62
3.92	0.001850	3.74
4.10	0.197100	3.80
4.22	0.235400	3.81
4.26	0.000057	3.89
4.33	0.095570	3.89
4.37	0.000016	3.92
4.41	0.071980	3.99
4.44	0.000282	4.01
4.45	0.115400	4.04
4.49	0.352800	4.11
4.51	0.000346	4.29
4.54	0.019110	4.34

[Pt(phbpyR)Cl] 4

	4.68	0.000019	4.36
	4.87	0.160700	4.40
	4.89	0.025950	4.47
	5.03	0.160800	4.59
	5.12	0.020230	4.61
	5.14	0.017090	4.67
	5.23	0.001706	4.84
	5.24	0.032920	4.87
	5.27	0.004475	4.99
	5.27	0.434100	5.05
	5.33	0.000074	5.13
	5.36	0.000001	5.16
	5.42	0.130800	5.18
	5.43	0.005331	5.19
	5.45	0.004434	5.25
	5.48	0.019010	5.30
	5.49	0.008696	5.31
	5.62	0.011770	5.34
	5.67	0.061700	5.35
	5.70	0.136700	5.40
[Pt(dpybR)Cl] <u>5</u> (R			
$= CH_3)$	3.17	0.003264	2.68
	3.20	0.099080	2.76
	3.61	0.005118	3.04
	3.61	0.005321	3.25
	3.70	0.000000	3.40
	3.76	0.000000	3.61
	3.91	0.000660	3.67
	3.92	0.043080	3.71
	3.95	0.000121	3.78
	4.21	0.240400	3.84
	4.28	0.015640	3.88
	4.33	0.107500	3.88
	4.35	0.000324	3.98
	4.50	0.000001	4.06
	4.55	0.048460	4.17
	4.55	0.015200	4.20
	4.64	0.011690	4.27
	4.67	0.000049	4.31
	4.76	0.003277	4.38
	4.81	0.000775	4.38
	4.83	0.028340	4.43
	4.87	0.000104	4.43
	4.90	0.000477	4.47
	4.93	0.353600	4.62

4.95	0.000196	4.63
4.97	0.000016	4.72
5.09	0.008831	4.77
5.18	0.000012	4.82
5.20	0.018190	4.82
5.20	0.099720	4.93
5.28	0.000032	4.95
5.30	0.065520	5.06
5.38	0.108900	5.09
5.50	0.373800	5.14
5.56	0.011210	5.20
5.59	0.003514	5.24
5.60	0.000053	5.27
5.69	0.063100	5.35
5.72	0.000108	5.35
5.76	0.022010	5.45

Table S3. TD-DFT/B3LYP transition energies (in eV) to the low-lying SO excited states of $[Pt(bpy)Cl_2] \mathbf{1}$ and $[Pt(tpy)Cl]^+ \mathbf{3}$ and associated oscillator strengths f.

	transition	f
	energies	
[Pt(bpy)Cl ₂] <u>1</u>	2.43	0.000000
	2.43	0.000025
	2.54	0.000274
	2.54	0.000109
	2.56	0.001555
	2.66	0.000624
	2.69	0.000001
	2.70	0.000406
	2.72	0.000683
	2.76	0.000002
	2.81	0.001191
	2.82	0.000792
	2.85	0.000616
	2.88	0.001481
	2.90	0.000011
	2.99	0.076480

 3.19	0.000000
3.20	0.000579
 3.20	0.008916
 3.34	0.001382
 3.36	0.000002
 3.39	0.000145
 3.53	0.000395
 3.55	0.000012
 3.58	0.000782
3.58	0.000639
3.59	0.014580
3.67	0.003031
3.67	0.000078
3.69	0.001410
3.70	0.001971
3.78	0.070270
3.78	0.001771
3.84	0.000270
3.84	0.014570
3.86	0.000056
3.86	0.000033
3.86	0.022410
3.87	0.000970
3.88	0.000077
3.88	0.004010
3.93	0.240900
3.93	0.000352
3.94	0.000187
3.94	0.004114
4.04	0.009674
4.05	0.000665
4.05	0.000459
4.06	0.001349

4.07	0.250200
4.08	0.000010
4.08	0.037480
 4.09	0.001662
 4.10	0.006391
 4.18	0.075060
 4.23	0.000613
 4.23	0.000518
 4.24	0.024260
4.25	0.188700
 4.36	0.000003
4.36	0.000062
4.36	0.000222
4.36	0.000155
4.36	0.001908
4.36	0.005769
4.47	0.000025
4.47	0.000408
4.47	0.002917
4.50	0.002004
4.50	0.000080
4.51	0.000069
4.63	0.015860
4.65	0.000090
4.65	0.025580
4.65	0.001828
4.66	0.000052
4.78	0.013970
4.78	0.001193
4.79	0.000064
4.82	0.011170
4.83	0.001273
4.83	0.002248

4.83	0.001106
 4.84	0.047230
4.86	0.000308
 4.86	0.000171
 4.87	0.000238
 4.88	0.000046
 4.88	0.026990
 4.89	0.009901
 4.89	0.004511
 4.91	0.014770
 5.01	0.036620
5.04	0.000020
 5.05	0.000233
5.08	0.078940
5.10	0.001318
5.10	0.017530
5.11	0.000021
5.12	0.001098
5.12	0.000009
5.12	0.001533
5.13	0.017320
5.15	0.028530
5.20	0.019240
5.24	0.005444
5.24	0.004944
5.25	0.000626
5.26	0.001691
5.28	0.000015
5.29	0.034070
5.32	0.001888
5.33	0.012540
5.33	0.000014
 5.33	0.002297

 5.33	0.000002
5.37	0.000273
5.41	0.000582
 5.42	0.064040
 5.45	0.000240
 5.46	0.000062
 5.47	0.000023
 5.48	0.000333
 5.48	0.000054
 5.49	0.035300
 5.49	0.000031
 5.50	0.003183
 5.50	0.000050
 5.51	0.011090
5.52	0.020590
5.52	0.000008
5.54	0.012870
 5.56	0.000005
 5.56	0.000028
 5.57	0.001061
 5.58	0.000016
 5.58	0.000012
 5.59	0.000070
 5.63	0.000103
 5.66	0.000004
 5.68	0.000034
 5.69	0.006479
 5.70	0.013610
 5.72	0.000011
5.72	0.000742
 5.73	0.000075
5.77	0.000033
5.78	0.005099

	5.79	0.000003
	5.80	0.000055
	5.90	0.003764
	5.93	0.000053
	5.96	0.021510
	5.96	0.013870
	6.03	0.002938
	6.04	0.125900
	6.09	0.434500
	6.17	0.061560
	6.21	0.000005
	6.41	0.000027
$[Pt(tpy)Cl]^+$ 3	2.61	0.000479
	2.61	0.000000
	2.62	0.000847
	2.79	0.000619
	2.79	0.000000
	2.81	0.001573
	2.91	0.040410
	2.95	0.036980
	3.02	0.000000
	3.03	0.000464
	3.04	0.000031
	3.05	0.000005
	3.05	0.010220
	3.11	0.001303
	3.13	0.000014
	3.15	0.000000
	3.16	0.006359
	3 17	0.001003
	3.23	0.003465
	3.33	0.000403
	3 34	0.004794

3.34	0.000000
3.37	0.041770
3.38	0.018940
3.41	0.000127
 3.41	0.000051
 3.46	0.004273
 3.48	0.000339
 3.50	0.013510
 3.52	0.000003
 3.55	0.137600
 3.60	0.000270
3.60	0.000003
 3.61	0.053840
 3.62	0.055870
 3.71	0.000001
 3.74	0.002764
 3.75	0.022440
 3.89	0.002835
 3.90	0.000004
 3.92	0.372500
 3.96	0.000121
 3.96	0.000001
 3.97	0.085540
 3.97	0.000276
 4.03	0.003461
 4.03	0.000003
 4.03	0.003094
 4.03	0.000888
 4.09	0.000002
4.09	0.000125
 4.10	0.009010
 4.11	0.006814
4.12	0.000008

4.12	0.000224
 4.17	0.008800
4.21	0.164300
 4.25	0.027530
 4.25	0.000032
 4.25	0.000014
 4.26	0.001533
 4.26	0.000038
 4.26	0.000006
 4.27	0.020310
 4.33	0.000257
 4.37	0.002119
 4.37	0.000027
 4.38	0.000008
 4.38	0.006336
 4.39	0.058010
 4.41	0.089460
 4.42	0.013060
 4.42	0.000029
 4.43	0.000052
 4.45	0.090970
 4.45	0.000100
 4.45	0.002599
 4.46	0.000067
 4.50	0.000005
 4.51	0.017420
 4.51	0.000178
 4.51	0.000019
 4.53	0.013330
 4.54	0.000072
 4.55	0.000008
 4.60	0.092780
4.61	0.069250

4.66	0.024780
 4.82	0.003680
 4.82	0.000071
 4.82	0.000036
4.83	0.011170
4.85	0.000073
4.85	0.000026
4.92	0.439000
4.94	0.007059
4.95	0.000019
4.95	0.012620
4.95	0.002787
4.96	0.000020
4 97	0.006038
4 97	0.000054
4.97	0.000034
4.97	0.000023
4.97	0.009485
4.90	0.019000
4.99	0.107700
4.99	0.107700
5.00	0.000125
5.00	0.000221
5.01	0.053290
5.01	0.000330
5.03	0.011390
5.05	0.000069
5.05	0.024470
 5.09	0.000011
 5.11	0.051530
 5.11	0.128700
5.14	0.000066
5.17	0.000001
5.19	0.001595

5.22	0.007783
 5.23	0.000451
 5.24	0.000043
 5.24	0.000033
 5.25	0.000033
 5.27	0.005651
 5.27	0.000086
 5.28	0.007540
 5.29	0.000099
 5.29	0.000010
 5.29	0.019560
5.30	0.000077
 5.31	0.004218
5.31	0.000106
5.32	0.000003
5.35	0.000314
5.37	0.024970
5.38	0.023870
5.40	0.000043
5.42	0.000005
5.43	0.002933
5.44	0.003506
5.45	0.063890
5.46	0.000179
5.46	0.086860
5.53	0.004981
5.56	0.037160
5.57	0.003140
5.57	0.001089
5.57	0.000019
5.57	0.000004
5.58	0.016620
 5.60	0.031700

5.63	0.000087
5.68	0.005970
5.71	0.000091
5.73	0.013310
5.80	0.000000
5.83	0.022260
5.91	0.000170

Table S4. TD-DFT/B3LYP transition energies (in eV) to the SO excited states of $[Pt(ppy)Cl_2]^- \underline{2}$, $[Pt(phbpyR)Cl] \underline{4}$ and $[Pt(dpybR)Cl] \underline{5}$ (R = CH₃) and associated oscillator strengths f.

	transition	f
	energies	
[Pt(ppy)Cl ₂] ⁻ 2	2.64	0.000019
	2.64	0.000770
	2.65	0.000449
	2.87	0.022460
	2.88	0.000716
	2.89	0.006381
	2.92	0.002645
	2.94	0.002098
	2.96	0.000225
	3.02	0.021670
	3.07	0.017340
	3.09	0.000429
	3.16	0.036080
	3.23	0.000925
	3.27	0.000115
	3.30	0.010480
	3.32	0.021190
	3.33	0.001418
	3.38	0.000559
	3.49	0.000052
	3.49	0.001978

3.49	0.002077
3.64	0.009734
 3.65	0.000654
 3.67	0.003272
 3.68	0.035760
 3.69	0.031130
 3.73	0.008840
 3.73	0.004040
 3.74	0.000926
 3.80	0.015380
 3.82	0.002352
3.85	0.007229
3.85	0.051680
3.88	0.001113
3.89	0.057690
3.90	0.000682
3.91	0.013330
3.93	0.000968
3.94	0.000857
3.95	0.085010
4.07	0.020400
4.13	0.172700
4.13	0.000761
4.14	0.006143
4.14	0.028010
4.19	0.000694
4.21	0.140200
4.31	0.003682
4.31	0.039000
4.33	0.000704
4.34	0.016200
4.35	0.002779
4.42	0.003985

4.42	0.000157
4.43	0.001407
 4.44	0.001594
 4.47	0.024350
 4.52	0.000642
 4.52	0.001567
 4.53	0.000269
 4.58	0.002763
 4.59	0.000312
 4.59	0.001792
 4.60	0.002758
 4.60	0.000514
 4.61	0.009612
 4.62	0.067750
 4.65	0.120500
4.68	0.067340
4.69	0.005160
4.71	0.006120
4.72	0.120200
 4.75	0.091630
4.82	0.006902
4.82	0.001194
4.84	0.011570
4.84	0.033980
4.87	0.010210
4.90	0.001873
4.91	0.004629
4.92	0.030090
4.99	0.001960
5.00	0.004980
5.00	0.000923
5.02	0.001693
5.02	0.003258

 5.02	0.010440
5.04	0.000391
 5.05	0.000747
 5.06	0.000342
5.10	0.000308
5.10	0.002778
5.11	0.001097
 5.11	0.000228
5.12	0.001561
5.13	0.020250
5.15	0.000244
5.16	0.007813
5.23	0.000710
5.23	0.006217
5.25	0.000293
5.29	0.068360
5.30	0.060280
5.33	0.000514
5.33	0.002826
5.34	0.001151
5.36	0.041590
5.38	0.000539
 5.40	0.000810
5.40	0.004968
5.41	0.018790
5.43	0.003486
5.43	0.000814
5.44	0.000559
5.45	0.001952
 5.46	0.000151
 5.46	0.003160
 5.50	0.002924
5.50	0.022040

 5.51	0.000959
 5.51	0.021890
5.54	0.020840
5.56	0.001587
 5.57	0.001370
 5.58	0.004945
 5.58	0.000783
 5.59	0.003555
 5.59	0.005993
 5.60	0.007465
 5.60	0.000131
5.61	0.000968
5.63	0.001076
5.64	0.032800
5.66	0.000514
5.67	0.002905
5.67	0.001207
5.68	0.005034
5.69	0.018410
5.69	0.004691
5.72	0.064440
5.74	0.000956
5.75	0.002038
5.76	0.015900
5.81	0.002814
5.82	0.091790
5.85	0.130000
5.86	0.136800
5.91	0.028530
5.92	0.004052
5.94	0.039630
5.94	0.007063
5.95	0.006752

	5.96	0.111300
	5.98	0.001543
	6.00	0.156600
	6.05	0.021070
	6.07	0.013830
	6.15	0.091130
	6.21	0.006439
[Pt(phbpyR)Cl] 4	2.40	0.000069
	2.40	0.000226
	2.41	0.000337
	2.50	0.000584
	2.51	0.000068
	2.54	0.001254
	2.58	0.004491
	2.75	0.026920
	2.81	0.000072
	2.82	0.001513
	2.82	0.000188
	3.02	0.001126
	3.03	0.000575
	3.05	0.001219
	3.14	0.008892
	3.22	0.000156
	3.22	0.041790
	3.24	0.002023
	3.28	0.108100
	3.29	0.000118
	3.30	0.016830
	3.30	0.001260
	3 33	0.030710
	3 37	0.081270
	3 30	0.0001270
	3.43	0.000859
		0.000000

 3.45	0.018590
3.47	0.000078
3.48	0.008266
 3.51	0.000045
 3.51	0.011440
 3.52	0.000143
 3.53	0.000984
 3.54	0.037580
 3.56	0.014490
 3.67	0.265400
 3.71	0.000058
 3.72	0.000067
 3.73	0.004725
 3.74	0.000092
3.75	0.038920
3.78	0.000366
3.81	0.002689
 3.82	0.000207
 3.84	0.001071
 3.85	0.043960
 3.90	0.000094
 3.90	0.005303
 3.90	0.000185
 3.93	0.072150
 3.95	0.000006
 3.95	0.000060
 3.96	0.072500
 4.03	0.054380
 4.05	0.044740
4.06	0.000173
 4.06	0.000211
4.09	0.052450
4.11	0.000310

4.12	0.000584
 4.12	0.036600
 4.16	0.002086
 4.17	0.000036
 4.17	0.000032
 4.17	0.006967
 4.19	0.000061
 4.23	0.000035
 4.27	0.176000
 4.33	0.000075
 4.33	0.005403
 4.35	0.000037
 4.36	0.003301
 4.36	0.000073
 4.36	0.000039
4.42	0.023820
4.44	0.022500
4.45	0.000029
4.47	0.205400
4.49	0.050380
4.50	0.000387
4.51	0.053440
4.54	0.052170
 4.55	0.000049
4.56	0.008294
 4.58	0.000043
4.61	0.000072
4.62	0.009115
4.62	0.000066
4.63	0.037740
4.64	0.000156
4.69	0.013680
4.69	0.000107

4.71	0.000171
 4.72	0.035090
4.73	0.000171
 4.76	0.070350
 4.77	0.000102
 4.78	0.000141
 4.79	0.054910
 4.80	0.030060
 4.82	0.035960
4.82	0.001474
 4.83	0.000311
4.86	0.004314
4.86	0.000100
4.87	0.000135
4.91	0.028240
4.95	0.009724
4.96	0.000913
4.96	0.000136
4.98	0.065420
5.00	0.005316
5.01	0.000140
5.01	0.000224
5.04	0.137300
5.07	0.000223
5.07	0.025450
5.07	0.018320
5.08	0.000079
5.13	0.000725
5.14	0.028040
5.15	0.012410
5.15	0.000037
5.17	0.035460
5.18	0.000307

 5.21	0.000552
 5.21	0.130700
 5.23	0.000562
 5.23	0.018580
 5.24	0.032830
 5.26	0.001328
 5.27	0.023720
 5.29	0.014440
 5.29	0.001332
 5.29	0.001514
 5.30	0.006581
 5.31	0.000251
 5.31	0.006344
5.32	0.009559
5.33	0.004991
5.33	0.000358
5.34	0.000347
5.38	0.001766
5.38	0.028670
5.39	0.000271
5.39	0.082980
5.40	0.000856
5.43	0.027150
5.45	0.000672
5.47	0.004089
5.50	0.019330
5.54	0.058950
5.57	0.006892
5.62	0.064120
5.66	0.000934
5.69	0.039770
5.70	0.069260
5.70	0.004638

	5.74	0.006997
	5.76	0.088040
[Pt(dpybR)Cl] 5		
$(R = CH_3)$	2.60	0.000003
	2.60	0.000222
	2.61	0.000155
	2.69	0.000022
	2.69	0.000000
	2.70	0.000181
	2.95	0.002757
	2.96	0.000000
	2.97	0.000079
	2.97	0.001702
	3.00	0.000001
	3.01	0.001055
	3.05	0.001301
	3.06	0.075260
	3.19	0.016480
	3.41	0.013250
	3.42	0.000059
	3.43	0.000016
	3.43	0.002971
	3.48	0.000000
	3.50	0.001176
	3.52	0.000630
	3.56	0.000000
	3.60	0.002450
	3.60	0.001210
	3.61	0.001390
	3.66	0.000187
	3.68	0.000001
	3.70	0.002116
	3.70	0.001372

 3.72	0.000000
 3.77	0.000986
 3.78	0.000059
 3.78	0.013110
 3.82	0.016930
 3.82	0.000002
 3.82	0.001294
 3.83	0.000204
 3.83	0.002646
 3.84	0.000004
 3.84	0.000608
 3.86	0.008773
3.87	0.010190
3.91	0.000001
3.92	0.000428
3.94	0.000643
3.96	0.002589
3.97	0.000001
3.98	0.000489
3.99	0.009936
4.00	0.000205
4.07	0.000041
4.13	0.051830
4.13	0.017650
4.15	0.013270
4.16	0.000005
4.16	0.000271
4.17	0.002656
4.18	0.001685
4.18	0.000001
4.18	0.000073
4.22	0.000457
4.22	0.000007

4 2.4	0.048150
4 30	0.085000
4.50	0.000000
4.55	0.000002
4.35	0.000077
 4.36	0.008985
 4.37	0.000004
4.37	0.000083
4.38	0.036070
4.39	0.027610
4.41	0.001024
 4.42	0.000013
 4.42	0.000290
 4.46	0.000021
 4.46	0.000004
 4.51	0.056490
4.51	0.024280
4.52	0.000007
4.53	0.006945
4.57	0.000034
4.58	0.000001
4.59	0.008740
4.60	0.003422
4.60	0.000095
4.61	0.060790
4.64	0.012180
4.71	0.000002
4 72	0 000184
4.73	0.002290
4.73	0.000044
4 76	0 000030
A 76	0.000004
 4.70	0.000000
4.70	0.025250
4.79	0.005336

4.80	0.000242
4.80	0.001597
4.81	0.004075
 4.81	0.000168
 4.82	0.000078
 4.82	0.002327
 4.85	0.000166
 4.89	0.000363
 4.93	0.000822
4.93	0.000075
 4.93	0.004257
4.94	0.000221
4.95	0.013540
4.95	0.000094
4.96	0.003218
4.97	0.047850
4.97	0.020900
5.00	0.002058
5.00	0.000073
5.00	0.000071
5.06	0.116100
5.06	0.005670
5.08	0.000057
5.10	0.064000
5.10	0.001080
5.10	0.008547
5.14	0.007894
5.15	0.000023
5.15	0.000066
5.17	0.045050
5.17	0.000328
5.20	0.000009
5.21	0.006986

5.01	0.00000
 5.21	0.000009
5.22	0.003665
5.22	0.014380
5.24	0.000135
 5.25	0.011220
5.25	0.050420
 5.25	0.004854
 5.27	0.000024
 5.28	0.000004
 5.29	0.000128
 5.33	0.000002
 5.33	0.000003
 5.36	0.011970
 5.39	0.000038
 5.39	0.000034
 5.39	0.068000
 5.41	0.005260
 5.41	0.016170
 5.43	0.000112
 5.44	0.000004
 5.48	0.076810
 5.51	0.000003
 5.51	0.000026
 5.53	0.259700
 5.54	0.066910
 5.63	0.028160
 5.63	0.000378
 5.65	0.003724
 5.72	0.001812
 5.73	0.057530
5.77	0.021600

Figure S1. Comparison between the "scalar" TD-DFT theoretical absorption spectra of [Pt(ppy)Cl₂]⁻ <u>2</u> using B3LYP (in black), CAM-B3LYP (in blue) and B3LYP with TDA (in red).

Figure S2. Comparison between the TD-DFT theoretical absorption spectra of $[Pt(ppy)Cl_2]^- 2$ with SOC computed with B3LYP (in black) and B3LYP with TDA (in red).