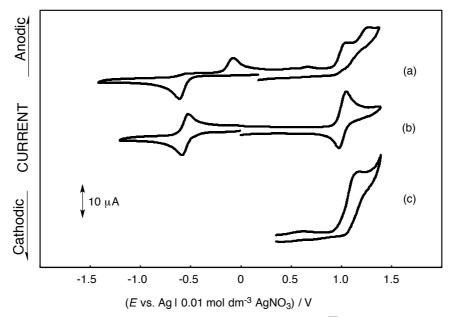
Supplementary Information

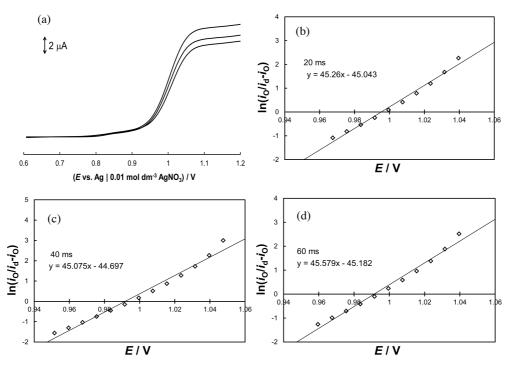

Formation of Bis(2-pyridylcarbonyl)aminate by Oxidation of Ethylbis(2-pyridylmethyl)amine on Trichloridoruthenium(III) Complex

Hirotaka Nagao*, Naoto Shimura, and Haruka Yonezawa

Department of Materials and Life Sciences, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan

(1) Electrochemical properties of *fac*-[Ru^{III}Cl₃(ebpma)]

CVs of *fac*-[Ru^{III}Cl₃(ebpma)] in CH₃CN at room temperature and -40°C are shown in Figure S1(a) and (b). Controlled potential electrolysis (CPE) of *fac*-[Ru^{III}Cl₃(ebpma)] in CH₃CN was performed at 1.1 V. After CPE, a new oxidation wave was observed at 1.2 V as shown in Fig. S1(c).


Fig. S1 Cyclic voltammogarms in CH₃CN; (a) and (b) fac-[Ru^{III}Cl₃(ebpma)] at room temperature and -40°C, (c) after the CPE at 1.1 V of fac-[Ru^{III}Cl₃(ebpma)].

Analysis of NPV for the oxidation wave

Normal pulse voltammetry was carried out in CH_3CN at -40°C with sampling time of 20, 40, and 60 ms. These NPVs were analyzed using the Nernst equation below.

$$\ln\left(\frac{i_{\rm O}}{i_{\rm d}-i_{\rm O}}\right) = \frac{nF}{RT}(E-E_{1/2})$$

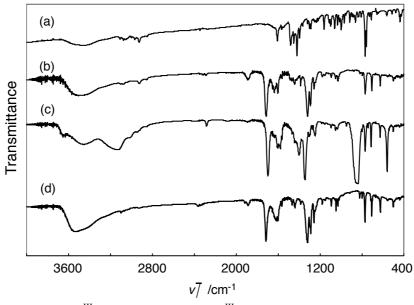
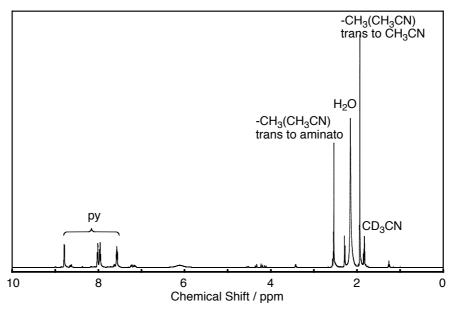

The slops of the line are close to the ideal value (49.8 V⁻¹) for one-electron process (n = 1), indicating that the oxidation wave is one-electron process.

Fig. S2 Normal pulse voltammogarms of *fac*-[Ru^{III}Cl₃(ebpma)] in CH₃CN at -40°C (a) and the plots of $\ln(i_0/(i_d-i_o))$ vs. *E* (b)-(d).


(2) IR spectra of ruthenium complexes

IR spectra of fac-[Ru^{III}Cl₃(ebpma)], [Ru^{III}Cl₂(NCCH₃)(bpca)]·H₂O, [Ru^{II}(NCCH₃)₃(bpca)]PF₆ and [Ru^{III}Cl₃(Hbpca)] were recorded on a Shimazu IR Affinity-1 spectrophotometer using samples prepared as KBr disks. The characteristic CO stretching band of bis(2-pyridylcarbonyl)aminato ligand was observed around 1700 cm⁻¹ as shown in (b) and (c).

Fig. S3 IR spectra of *fac*-[Ru^{III}Cl₃(ebpma)] (a), [Ru^{III}Cl₂(NCCH₃)(bpca)]·H₂O (b), [Ru^{II}(NCCH₃)₃(bpca)]PF₆ (c), and [Ru^{III}Cl₃(Hbpca)] (d).

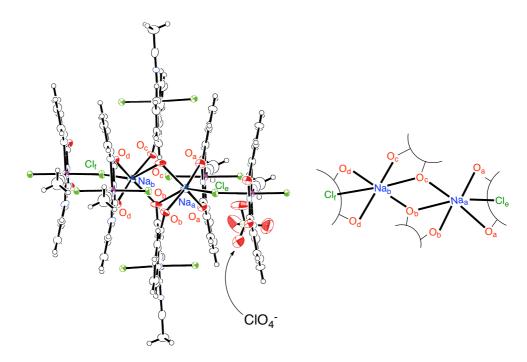
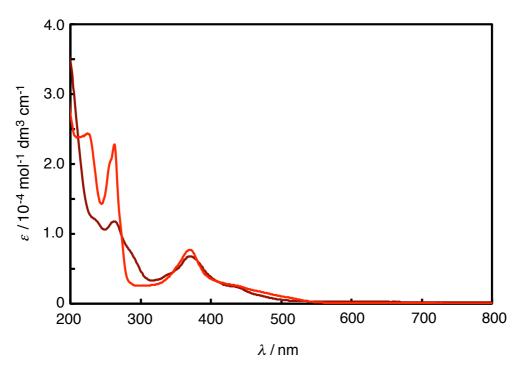

(3) NMR spectra of [Ru^{II}(NCCH₃)₃(bpca)]PF₆.

Fig. S4 ¹H NMR spectrum of $[Ru^{II}(NCCH_3)_3(bpca)]PF_6$ in CD₃CN.


(4) X-ray crystallography for [Ru^{III}Cl₂(NCCH₃)(bpca)]·0.5NaClO₄.

Single crystals of $[Ru^{III}Cl_2(NCCH_3)(bpca)] \cdot 0.5NaClO_4$ were obtained by recrystallization from a CH₃CN-H₂O solution containing NaClO₄ and then vapor diffusion of ether into the solution.

Fig. S5 Structure of $[Ru^{III}Cl_2(NCCH_3)(bpca)] \cdot 0.5NaClO_4$ and structural network between Na⁺, Cl⁻ and bpca⁻ ligands.

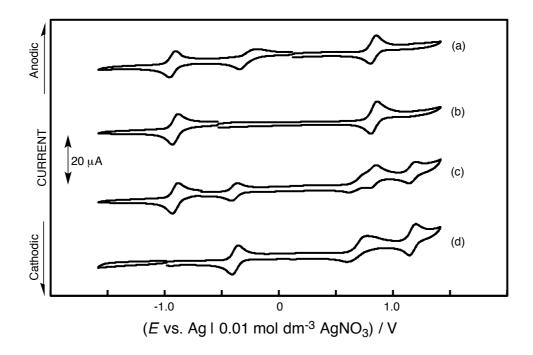

(5) UV-vis spectra of ruthenium complexes.

Fig. S6 UV-vis spectra of $[Ru^{III}Cl_2(NCCH_3)(bpca)]$ (brown line) and $[Ru^{II}(NCCH_3)_3(bpca)]PF_6$ (red line) in CH₃CN.

(6) Controlled potential electrolysis (CPE) experiment of [Ru^{III}Cl₃(Hbpca)]

The CV of $[Ru^{II}Cl_3(Hbpca)]$ was shown in (a). CPE was performed at -0.6 V (Q/NF = 0.9) in CH₃CN at -40°C and the first reduction wave -0.31 V disappeared as shown (b). During the CPE experiment, the evolution of H₂ was observed by GC. Further reduction at -1.2 V (Q/NF = 1.2) afforded CV of (c). This CV revealed the formation of $[Ru^{II}Cl_2(NCCH_3)(bpca)]$ (-0.41 and 1.17 V) and $[Ru^{II}(NCCH_3)_3(bpca)]^+$ (0.68 V) under electrochemical conditions with a Cl⁻ dissociation, whose wave showed around 0.7 V and overlapped with the wave of $[Ru^{II}(NCCH_3)_3(bpca)]^+$. Finally, the wave of $[Ru^{II}Cl_2(NCCH_3)(bpca)]$ disappeared and the wave around 0.7 V were bigger in a few days.

Fig. S7 Cyclic voltammogarms in CH₃CN at -40°C; (a) before electrolysis, (b) after CPE at -0.6 V (Q/NF = 0.9), (c) further reduction CPE at -1.2 V (Q/NF = 1.2) and (d) after standing for 1 day.