Synthesis, Spectroscopic and Electrochemical Studies of Phosphoryl and Carbomethoxyphenyl Substituted Corroles and their Anion Detection Properties

Pinky Yadav and Muniappan Sankar*

Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee - 247667, India

Supporting information

Table of Contents (TOC)

Fig. S1 Optical absorption spectra of 3, 3a and 3b in CH₂Cl₂ at room temperature.

Fig. S2 ¹H NMR spectrum of free base 5,10,15-tris(4-phosphorylphenyl)corrole (2) in CDCl₃.

Fig. S3 ¹HNMR of 5,10,15-tris(4-phosphonicdiesterphenyl)corrolato Cu(III) (2a) in CDCl₃.

Fig. S4 ¹HNMR of 5,10,15-tris(4-phosphonicdiesterphenyl)corrolato Ag(III) (2b) in CDCl₃.

Fig. S5 ¹HNMR spectrum of 5,10,15-tris(4-carboxymethylphenyl)corrolato Ag(III) (3b) in CDCl₃.

Fig. S6 MALDI-TOF Mass spectrum of 2a (inset show the experimental and simulated isotopic pattern for $[M]^+$)

Fig. S7 MALDI-TOF Mass spectrum of 2b (inset show the experimental and simulated isotopic pattern for $[M \bullet H_2O]^+$).

Fig. S8 MALDI-TOF Mass spectrum of 3a (inset show the experimental and simulated isotopic pattern for $[M]^+$).

Fig. S9 MALDI-TOF Mass spectrum of 3b (inset show the experimental and simulated isotopic pattern for [M]⁺).

Fig. S10 Hill plot of 2 with addition of (a) TFA (b) TBAOH.

Fig. S11 (a) Protonation studies of 3 using TFA in CH_3CN (inset shows plot [TFA] versus [TFA]/A_n-A₀.) (b) Hill plot, protonation of 3.

Fig. S12 (a) Deprotonation studies of 3 using TBAOH in acetonitrile, inset shows plot between $[TBAOH]^2$ and $\{TBAOH\}^2/A_n$ -A₀. (b) Hill plot, deprotonation of 3.

Fig. S13. Electronic absorption spectral changes in 2 (a) while addition of various anions in CH₃CN and (b) Hill plot of 2 while adding of TBAF.

Fig. S14 UV-Visible spectral changes of **2** while addition (a) TBAOAc (inset shows plot [TFA] versus [TFA]/ A_n - A_0 .), (b) Hill plot for acetate binding with **2**, (c) with addition of TBAH₂PO₄ (inset shows plot [TFA] versus [TFA]/ A_n - A_0 .), and (d) showing Hill plot for dihydrogenphosphate binding with **2**.

Fig. S15 (a) Electronic absorption spectral changes in 3 while addition of various anions in CH_3CN , (b) UV-Visible titration of 3 with fluoride ion in CH_3CN inset shows a plot $[TBAF]^2$ versus $[TBAF]^2/A_n-A_0$ for F⁻ ion binding with 3 (c) Hill plot for F⁻ ion binding with 3.

Fig. S16 UV-Visible spectral changes of **3** in CH₃CN (**a**) with addition of TBAOAc inset show plot $[anion]^2$ *versus* $[anion]^2/A_n$ -A_o (**b**) Hill plot, (**c**) while addition of TBAH₂PO₄ inset show plot $[anion]^2$ versus $[anion]^2/A_n$ -A_o and (**d**) Hill plot.

Fig. S17 Absorption spectral changes while addition of fluoride and MeOH with 2 in CH₃CN.

Fig. S18 Cyclic Voltammograms of free base 1-3 corroles in CH_2Cl_2 containing 0.1M TBAP (with a scan rate of 100 mV/s. GC Working electrode, Ag/AgCl Reference electrode and Pt wire counter electrode were used).

Fig. S1 Optical absorption spectra of 3, 3a and 3b in $\rm CH_2Cl_2$ at room temperature

Fig. S2 ¹H NMR spectrum of free base 5,10,15-tris(4-diethoxyphosphorylphenyl)corrole (2) in CDCl₃

Fig. S3 ¹HNMR of 5,10,15-tris(4-diethoxyphosphorylphenyl)corrolato Cu(III) (2a) in CDCl₃

Fig. S4 ¹HNMR of 5,10,15-tris(4-diethoxyphosphorylphenyl)corrolato Ag(III) (2b) in CDCl₃

Fig. S6 MALDI-TOF Mass spectrum of 2a (inset show the experimental and simulated isotopic pattern for [M]⁺).

Fig. S7 MALDI-TOF Mass spectrum of 2b (inset show the experimental and simulated isotopic pattern for $[M \bullet H_2O]^+$).

Fig. S8 MALDI-TOF Mass spectrum of 3a (inset show the experimental and simulated isotopic pattern for [M]⁺).

Fig. S9 MALDI-TOF Mass spectrum of 3b (inset show the experimental and simulated isotopic pattern for [M]⁺).

Fig. S10 Hill plot of 2 with addition of (a) TFA (b) TBAOH.(a)

Fig. S11 (a) Protonation studies of 3 using TFA in CH_3CN (inset shows plot [TFA] versus [TFA]/A_n-A₀.) (b) Hill plot, protonation of 3.

Fig. S12 (a) Deprotonation studies of 3 using TBAOH in acetonitrile, inset shows plot between $[TBAOH]^2$ and $\{TBAOH]^2/A_n$ -A₀. (b) Hill plot, deprotonation of 3.

Fig. S13. Electronic absorption spectral changes in 2 (a) while addition of various anions in CH_3CN and (b) Hill plot of 2 while adding of TBAF.

(b)

(c) with addition of TBAH₂PO₄ (inset shows plot [TFA] versus [TFA]/A_n-A_{0.}), and (d) showing Hill plot for dihydrogenphosphate binding with 2.
(c) (d)

Fig. S15 (a) Electronic absorption spectral changes in **3** while addition of various anions in CH₃CN, (b) UV-Visible titration of **3** with fluoride ion in CH₃CN inset shows a plot $[TBAF]^2$ versus $[TBAF]^2/A_n$ -A₀ for F⁻ ion binding with **3** (c) Hill plot for F⁻ ion binding with **3**.

Fig. S16 UV-Visible spectral changes of 3 in CH₃CN (a) with addition of TBAOAc inset show plot $[anion]^2$ versus $[anion]^2/A_n - A_o$ (b) Hill plot

(c) while addition of $TBAH_2PO_4$ inset show plot [anion]² versus [anion]²/A_n-A_o (d) Hill plot

Fig. S17 Absorption spectral changes while addition of fluoride and MeOH with 2 in CH₃CN.

Fig. S18 Cyclic Voltammograms of free base 1-3 corroles in CH_2Cl_2 containing 0.1M TBAP (with a scan rate of 100 mV/s. GC Working electrode, Ag/AgCl Reference electrode and Pt wire counter electrode were used).

corrole	3σ -	Oxidation		Reduction
		Ι	II	Ι
1	0	630	1024	-1300 ^a
2	1.59	747	-	-893ª
3	1.35	740	1196	-1137ª

^aIrreversible reduction potential.

