Electronic Supporting Information

New Pt^{II} diimine-dithiolate complexes containing a 1,2-dithiolate-1,2*closo*-dicarbadodecarborane: an experimental and theoretical investigation

Anna Pintus, M. Carla Aragoni, Simon J. Coles, Susanne L. Coles (née Huth), Francesco Isaia, Vito

Lippolis, Ana-Daniela Musteti, Francesc Teixidor, Clara Viñas, and Massimiliano Arca*

Characterization of Compounds 2–5

Among compounds 2–5, the complex 2 displayed the highest solubility in a wide range of solvents. Hence, its characterization by NMR and UV-vis spectroscopies was fully investigated. Compounds 1, 3 and 4 showed much a lower solubility and consequently their characterization is not as complete as that described for 2. Moreover, the very low yield of 4 did not allow for a full characterization.

[Pt(phen)(dtoc)] (2). The complex was synthesized as described for **1** starting from [PtCl₂(phen)] (0.21 g, 0.48 mmol). Yield: 0.12 g (42 %); m.p. > 240° C; FTIR: \tilde{v} = 430 (vw), 453 (vw), 473 (vw), 496 (vw), 508 (w), 710 (vs), 726 (s), 763 (vw), 776 (vw), 793 (vw), 835 (vs), 867 (m), 878 (w), 929 (vw), 971 (m), 1036 (vw), 1072 (w), 1095 (w), 1110 (vw), 1147 (w), 1207 (w), 1222 (w), 1316 (vw), 1347 (vw), 1384 (vw), 1414 (w), 1429 (s), 1493 (vw), 1515 (w), 1578 (m), 1598 (w), 1629 (w), 2585 (vs), 2626 (w), 3056 (w) cm⁻¹; UV-Vis-NIR (CH₂Cl₂): λ (ε) = 229 (30300), 271 (32700), 403 (6200), 444 nm (6200 M⁻¹·cm⁻¹); ¹H NMR (DMSO-*d*₆): δ = 8.57 (2H, dd, ¹J(H,H) = 8, ¹J(H,H) = 1), 8.41 (2H, dd, ¹J(H,H) = 5, ¹J(H,H) = 1), 7.82 (2H, s), 7.59 (2H, dd, ¹J(H,H) = 8, ¹J(H,H) = 5), ; ¹H{¹¹B} NMR (DMSO-*d*₆): δ = 8.57 (2H, dd, ¹J(H,H) = 8, ¹J(H,H) = 1), 8.41 (2H, dd, ¹J(H,H) = 5, ¹J(H,H) = 1), 7.82 (2H, s), 7.59 (2H, dd, ¹J(H,H) = 8, ¹J(H,H) = 1), 8.41 (2H, dd, ¹J(H,H) = 5, ¹J(H,H) = 1), 1.86 (br s,B-H); ¹³C{¹H} NMR (DMF): δ = 147.9, 145.5, 130.8, 127.4, 126.6 (C_{aryl}), 85.8 (C_{cluster}); ¹¹B NMR (DMF): δ = -2.6 (2B, br s), -7.7 (6B, d, ¹J(B,H) = 139), -10.7 (2B, d, ¹J(B,H) = 127); elemental analysis calcd (%) for C₁₄H₁₈N₂S₂B₁₀Pt: C 28.91, H 3.11, N 4.81; found: C 29.31, H 3.00, N 5.00; CV (DMSO): *E_{1/2} vs* Fc⁺/Fc (scan rate = 100 mV·s⁻¹) = -1.604, -2.229 V.

[Pt(Me₂bipy)(dtoc)] (3). The complex was synthesized as described for 1 starting from [PtCl₂(Me₂bipy)] (0.18 g, 0.40 mmol). Yield: 0.12 g (46 %); m.p. > 240° C; FTIR: $\tilde{v} = 419$ (m), 469 (vw), 492 (vw), 569 (vw), 630 (v), 639 (vw), 721 (m), 779 (vw), 824 (vs), 843 (vw), 867 (m), 927 (w), 970 (w), 1039 (w), 1074 (w), 1124 (vw), 1140 (vw), 1227 (w), 1245 (w), 1307 (w), 1382 (w), 1447 (m), 1481 (w), 1489 (w), 1551 (vw), 1619 (vs), 2575 (vs), 2624 (m), 2955 (vw), 3067 (vw) cm⁻¹; UV-Vis-NIR (CH₂Cl₂): λ (ε) = 229 (27700), 256 (sh, 14300), 288 (20000), 299 (17700), 320(sh, 6600), 347 nm (5200 M⁻¹·cm⁻¹); ¹³C{¹H} NMR (DMF): δ = 158.8, 146.8, 140.0, 128.6, 124.6 (C_{aryl}), 81.2 (C_{cluster}), 26.6 (Me); ¹¹B NMR (DMF): δ = -2.7 (2B, br s), -7.6 (6B, d, ¹J(B,H) = 126), -10.4 (2B, br s); elemental analysis calcd (%) for C₁₄H₂₂N₂S₂B₁₀Pt: C 28.61, H 4.11, N 4.76; found: C 28.98, H 3.57, N 4.80; CV (DMSO): *E*_{1/2} *vs* Fc⁺/Fc (scan rate = 100 mV·s⁻¹) = -1.709 V. [**Pt**(*I*Bu₂bipy)(**dtoc**)] (**4**). The complex was synthesized as described for **1** starting from [PtCl₂(*I*Bu₂bipy)] (0.15 g, 0.29 mmol). Crystals suitable for X-ray diffraction were obtained by slow infusion of petroleum ether into a dichloromethane solution of the complex. Yield: 0.10 g (50 %); m.p. > 240° C; FTIR: \tilde{v} = 421 (w), 470 (m), 566 (vw), 597 (m), 639 (vw), 727 (m), 793 (w), 84 (s), 867 (w), 880 (m), 901 (vw), 930 (w), 973 (w), 1031 (vw), 1075 (m), 1123 (vw), 1156 (vw), 1203 (w), 1250 (m), 1307 (vw), 1369 (w), 1384 (w), 1397 (w), 1416 (m), 1448 (vw), 1467 (w), 1481 (m), 1614 (s), 2564 (vs), 2597 (vs), 2614 (vs), 2869 (vw), 2909 (vw), 2932 (vw), 2961 (s) cm⁻¹; UV-Vis-NIR (CH₂Cl₂): λ (ε) = 230 (35700), 292 (21400), 301 (22200), 438 nm (73000 M⁻¹·cm⁻¹; ¹¹B NMR (DMF): δ = -2.7 (2B, br s), -7.6 (6B, d, ¹J(B,H) = 126), -10.4 (2B, br s); elemental analysis calcd (%) for C₂₀H₃₄N₂S₂B₁₀Pt: C 35.75, H 5.40, N 4.16; found: C 34.61, H 5.10, N 5.11; CV (DMSO): *E*_{1/2} *vs* Fc⁺/Fc (scan rate = 100 mV·s⁻¹) = -1.698 V.

[Pt(Ph₂bipy)(dtoc)] (5). The complex was synthesized as described for 1 starting from [PtCl₂(Ph₂bipy)] (0.17 g, 0.30 mmol). The resulting brown precipitate was collected by filtration and recrystallized from THF. Yield: 0.04 g (4 %); m.p. > 240° C; FTIR: $\tilde{v} = 420$ (m), 437 (w), 466 (m), 428 (w), 689 (m), 720 (w), 760 (s), 840 (m), 874 (w), 1103 (vs), 1384 (w), 1413 (w), 1474 (m), 1539 (w), 1597 (w), 1611 (s), 2521 (s), 2578 (s) cm⁻¹; UV-Vis-NIR (CH₂Cl₂): λ (ε) = 266 (31500), 306 (27600), 317 (26700), 458 nm (9300 M⁻¹·cm⁻¹); E_{1/2} vs Fc⁺/Fc (scan rate = 100 mV·s⁻¹) = -1.536, -2.090 V.

· · · ·	1	4
Empirical formula	$C_{12}H_{18}B_{10}N_2PtS_2$	$C_{20}H_{34}B_{10}N_2PtS_2$
Formula weight	557.59	669.80
Crystal size (mm)	$0.42 \times 0.24 \times 0.04$	$0.34 \times 0.04 \times 0.02$
Space group	P-1	Imma
Crystal system	Triclinic	Orthorhombic
<i>a</i> (Å)	6.905(10)	16.056(8)
<i>b</i> (Å)	12.044(3)	7.405(3)
<i>c</i> (Å)	12.576(3)	25.101(12)
Volume (Å ³)	955.31(4)	2984.4(2)
Ζ	2	4
Calculated density (Mg m ⁻³)	1.938	1.491
Temperature (K)	120(2)	120(2)
Total number of data	4258	1900
Reflections unique	4232	1707
Parameters	246	107
R _{int}	1.3	1.0
Final <i>R</i> indices $[I > 2\sigma(I)]$	0.0376	0.0331
wR2 (all data)	0.0984	0.0653

 Table S1. Crystallographic data for complexes 1 and 4.

	CH ₂ Cl ₂	CHCl ₃	CH ₃ CN	Acetone	THF	DMF	Toluene
Pt-S(1)	2.302	2.300	2.305	2.304	2.302	2.305	2.295
Pt-S(2)	2.302	2.300	2.305	2.304	2.302	2.305	2.295
Pt–N(1)	2.053	2.053	2.052	2.052	2.053	2.052	2.053
Pt-N(2)	2.053	2.053	2.052	2.052	2.053	2.052	2.053
S(1)–C(1)	1.793	1.793	1.793	1.793	1.793	1.793	1.794
S(2)–C(2)	1.793	1.793	1.793	1.793	1.793	1.793	1.794
C(1)–C(2)	1.621	1.620	1.621	1.621	1.621	1.621	1.619
S(1)-Pt-S(2)	90.38	90.43	90.31	90.34	90.39	90.31	90.45
N(1)-Pt-N(2)	79.44	79.40	79.47	79.47	79.43	79.48	79.33
N(1)-Pt-S(2)-C(2)	175.43	175.22	175.38	175.44	175.41	175.37	174.14

 Table S2. Selected optimized bond lengths (Å) and angles (°) for complex 1 in different solvents

 (IEF-PCM SCRF model).^a

^a Atom labelling scheme as in Fig. 1.

		KS-MO	Ε	N^N	dtoc ^{2–}	Pt
	1	HOMO-1	-5.96	9	72	19
		LUMO	-3.23	92	3	5
	2	HOMO-1	-5.92	9	72	19
		LUMO	-3.16	92	3	5
	3	HOMO-1	-5.80	9	72	19
~~~		LUMO	-2.99	93	3	4
gas	4	HOMO-1	-5.73	9	72	20
		LUMO	-2.88	93	2	4
	5	HOMO-1	-5.80	10	71	19
		LUMO	-3.12	92	3	5
	6	HOMO-1	-5.77	10	70	19
		LUMO	-3.02	92	3	5
	1	HOMO-1	-6.23	8	65	27
	-	LUMO	-2.68	95	2	4
	2	HOMO-1	-6.21	10	64	27
		LUMO	-2.64	95	1	4
	3	HOMO-1	-6.17	8	64	28
DMSO		LUMO	-2.58	95	1	3
DWSU	4	HOMO-1	-6.17	8	64	28
		LUMO	-2.49	95	1	3
	5	HOMO-1	-6.19	11	62	27
		LUMO	-2.77	94	2	4
	6	HOMO-1	-6.17	13	60	27
		LUMO	-2.70	94	2	4

**Table S3.** Calculated eigenvalues E (eV) and composition (%) of frontier KS-MOs involved in the lowest energy excitation calculated for complexes **1–6** in the gas phase and in DMSO (IEF-PCM SCRF model), in terms of the central Pt atom and the N^N and dtoc^{2–} ligands.

**Table S4.** Calculated eigenvalues E (eV) and composition (%) of frontier KS-MOs involved in the lowest energy excitation calculated for complex **1** in different solvents (IEF-PCM SCRF model), in terms of the central Pt atom and the N^N and dtoc^{2–} ligands.

	KS-MO	E	N^N	dtoc ^{2–}	Pt
CH ₂ Cl ₂	HOMO-1	-6.18	8	66	26
	LUMO	-2.74	94	2	4
CHCl ₃	HOMO-1	-6.12	8	68	25
	LUMO	-2.81	94	2	4
CH ₃ CN	HOMO-	-6.23	8	65	27
	LUMO	-2.68	95	2	4
Acetone	HOMO-1	-6.21	8	66	27
	LUMO	-2.70	95	2	4
DMF	HOMO-1	-6.23	8	65	27
	LUMO	-2.68	95	2	4
THF	HOMO-1	-6.16	8	67	25
	LUMO	-2.76	94	2	4
Toluene	HOMO-1	-6.05	8	69	22
	LUMO	-2.94	93	2	4

		Q(Pt)	<i>Q</i> (N1)	<i>Q</i> (N2)	<i>Q</i> (S1)	<i>Q</i> (S2)	<i>Q</i> (N^N)	Q(dtoc)
1	1	0.116	-0.443	-0.443	-0.002	-0.002	0.427	-0.543
	2	0.114	-0.440	-0.440	0.000	0.000	0.425	-0.540
Cas	3	0.113	-0.448	-0.448	-0.008	-0.008	0.449	-0.562
Gas	4	0.112	-0.446	-0.446	-0.011	-0.011	0.457	-0.570
	5	0.117	-0.447	-0.447	-0.005	-0.005	0.438	-0.555
	6	0.114	-0.443	-0.443	-0.005	-0.005	0.441	-0.555
	1	0.140	-0.445	-0.445	-0.056	-0.056	0.573	-0.713
	2	0.137	-0.443	-0.443	-0.052	-0.052	0.570	-0.707
DMCO	3	0.134	-0.452	-0.452	-0.059	-0.059	0.591	-0.725
DMSO	4	0.134	-0.500	-0.500	-0.060	-0.060	0.594	-0.727
	5	0.139	-0.449	-0.449	-0.056	-0.056	0.577	-0.717
	6	0.137	-0.445	-0.445	-0.054	-0.054	0.575	-0.712

**Table S5.** NPA charges Q (e) calculated on Pt, S(1), S(2), N(1), N(2), the dtoc^{2–} ligand and the diimmine N^N for complexes **1–6** in the gas phase and in DMSO (IEF-PCM SCRF model).^a

^a Atom labelling scheme as in Fig. 1.

	Q(Pt)	<i>Q</i> (N1)	<i>Q</i> (N2)	<i>Q</i> (S1)	<i>Q</i> (S2)	<i>Q</i> (N^N)	Q(dtoc)
CH ₂ Cl ₂	0.137	-0.445	-0.445	-0.049	-0.049	0.555	-0.692
CHCl ₃	0.134	-0.444	-0.444	-0.042	-0.042	0.536	-0.670
CH ₃ CN	0.140	-0.455	-0.455	-0.055	-0.055	0.572	-0.712
Acetone	0.139	-0.445	-0.445	-0.054	-0.054	0.568	-0.707
DMF	0.140	-0.445	-0.445	-0.056	-0.056	0.572	-0.712
THF	0.136	-0.445	-0.445	-0.047	-0.047	0.550	-0.687
Toluene	0.128	-0.444	-0.444	-0.029	-0.029	0.501	-0.629

**Table S6.** NPA charges Q (e) calculated on Pt, S(1), S(2), N(1), N(2), the dtoc^{2–} ligand and the diimmine N^N for **1** in different solvents (IEF-PCM SCRF model).^a

^a Atom labelling scheme as in Fig. 1.

**Table S7**. Main electronic singlet transitions (f > 0.005) calculated for **2** in DMSO (IEF-PCM SCRF model) at the TD-DFT level. For each transition, the excitation energy E (eV), the absorption wavelength  $\lambda$  (nm), the oscillator strength f, and the molecular orbital composition (%) of the excited-state functions, along with the fragments where the involved KS-MOs are mainly localized, are reported.

Exc. state	E(eV)	λ(nm)	f	Composition ^a	%	Assignment
S2	2.771	447.4	0.066	107→109	73	$dtoc^{2-}(64\%) + Pt(27\%) \rightarrow phen(95\%)$
<b>S</b> 3	2.993	414.2	0.144	108→110	73	$dtoc^{2-}(73\%) + Pt(24\%) \rightarrow phen(99\%)$
S4	3.054	406.0	0.029	107→110	97	$dtoc^{2-}(64\%) + Pt(27\%) \rightarrow phen(99\%)$
S5	3.162	392.1	0.010	108→111	92	$dtoc^{2-}(73\%) + Pt(24\%) \rightarrow dtoc^{2-}(46\%) + Pt(37\%)$
S12	4.280	289.6	0.040	107→112	87	$dtoc^{2-}(64\%) + Pt(27\%) \rightarrow phen(98\%)$
S14	4.504	275.3	0.097	104→109	35	phen(78%)→phen(95%)
				102→109	27	$dtoc^{2-}(53\%)+phen(28\%) \rightarrow phen(95\%)$
				100→109	14	$dtoc^{2-}(37\%) + Pt(37\%) \rightarrow phen(95\%)$
S15	4.519	274.3	0.023	103→109	92	$dtoc^{2-}(45\%) + Pt(44\%) \rightarrow phen(95\%)$

^a The MOs are labelled according to Fig. S3.



**Fig. S1**. Correlation between the lowest energy absorption maxima  $\lambda_{max}$  in the visible region in eight solvents for complex 2 and the empirical scale formulated by Eisenberg for [Pt(N^N)(S^S)] complexes ( $R^2 = 0.98$ ; Table 2).



**Fig. S2.** Correlation between the reduction potentials  $E_{1/2}^{II}$  (V vs Fc⁺/Fc) and the  $\lambda_{max}$  of the solvatochromic absorption (nm) in DMSO solutions of complexes **1–2** and **5–6** ( $R^2 = 0.98$ ; Tables 2 and 3). N^N = unsubstituted (rhombs) 2,2'-bipyridine (empty) or 1,10-phenathroline (filled), and alkyl (circles) or phenyl (triangles) derivatives.



Fig. S3. KS-MO scheme and isosurface drawings calculated for 2 in DMSO (IEF-PCM SCRF model;  $C_s$  point group; contour value = 0.05 e).



**Fig. S4.** Correlation between the experimental  $\lambda_{max}$  (nm) of lowest energy solvatochromic absorption in the Vis region and the IEF-PCM TD-DFT calculated LUMO energy (eV) for complexes **1–6** in DMSO ( $R^2 = 0.69$ ; Tables 2 and S3). N^N = unsubstituted (rhombs) 2,2'-bipyridine (empty) or 1,10-phenathroline (filled), and alkyl (circles) or phenyl (triangles) derivatives.



**Fig. S5**. Experimental and IEF-PCM SCRF TD-DFT calculated  $\lambda_{max}$  (nm) of the lowest energy solvatochromic absorption band in the visible region for **1** in different solvents ( $R^2 = 0.94$ ; Table 2).