Supporting Information for:

Structure and photoluminescence of silver(I) trinuclear halopyrazolato complexes

Yui Morishima^a, David James Young^b, Kiyoshi Fujisawa^{a*}

^a Department of Chemistry, Ibaraki University, Mito 310-8512, Japan of Science, Monash University, Jalan Lagoon Selatan, 475

^b School of Science, Monash University, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor D.E., Malaysia

Table S1	X-ray crystallographic data for L1 and L5 complexes		
	Experimental details of [Ag(L1Br)] ₂ , [Ag(L5H)] ₂ , and [Ag(L5Br)]	S 2	
Fig. S1	IR, far-IR, Raman spectra of L1 and L5 complexes	S4	
Table S2	Emission data at variable temperatures at 280 nm irradiation.	S5	
References		S5	

Table S1X-ray crystallographic data for L1 and L5 complexes.

	$[Ag(L1Cl)]_2 \cdot 0.5C_6H_{14} \cdot$	[Ag(L1I)]	$[Ag(L1I)]_2 \cdot C_6H_{14}$	$[Ag(L5Cl)] \cdot 2CH_2Cl_2$	
	3×0.25H ₂ O				
Formula	$C_{57}H_{92.5}Ag_6Cl_6N_{12}O_{0.75}$	$C_{27}H_{42}Ag_{3}I_{3}N_{6}$	$C_{60}H_{98}Ag_6I_6N_{12}$	C47H34Ag3Cl7N6	
Formula weight	1817.86	1154.99	2396.15	1254.60	
Crystal system	Monoclinic	Orthorhombic	Monoclinic	nic Orthorhombic	
Space group	$P2_{1}/c$ (No. 14)	<i>Pna</i> 2 ₁ (No. 33)	$P2_1/c$ (No. 14)	<i>Pna</i> 2 ₁ (No. 33)	
a /Å	10.2520(11)	11.5188(10)	14.823(2)	9.544(2)	
<i>b</i> /Å	29.412(2)	23.8743(13)	12.7462(11)	20.286(4)	
c /Å	27.446(3)	14.0966(7)	20.735(3)	24.142(4)	
eta /°	99.3800(11)		90.874(2)		
$V/\text{\AA}^3$	8165.2(12)	3876.6(5)	3917.1(8)	4674(2)	
Ζ	4	4	2	4	
$D \text{calc}/\text{gcm}^{-3}$	1.479	1.979	2.031	1.783	
<i>R</i> (int)	0.0512	0.0281	0.0456	0.0780	
μ (Mo K α) /cm ⁻¹	16.417	39.099	38.734	16.821	
Reflections collected	63254	30308	28371	37740	
Unique reflections	18485	4590	8762	8670	
No. of observations	7487 (<i>I</i> > 3σ(<i>I</i>))	4145 (<i>I</i> > 3σ(<i>I</i>))	6953 (<i>I</i> > 3σ(<i>I</i>))	$5024(I > 2\sigma(I))$	
No. of variables	823	395	428	603	
Reflections/para. ratio	9.10	10.49	16.25	8.33	
$R(I > 3\sigma(I))$	0.0603	0.0306	0.0517	$0.0390(I > 2\sigma(I))$	
$R_{\rm w}$ ($I > 3\sigma(I)$)	0.1335	0.0755	0.1282	$0.0530 (I > 2\sigma(I))$	
Good. of fit indicator	1.854	1.628	2.546	0.567	
Flack parameter		0.25(8)		0.06(3)	
		(Friedel pairs = 3956)		(Friedel pairs = 3170)	
Max/min peak, /e Å ³	1.68 / -0.69	0.89 / -0.59	2.51 / -1.73	1.29 / -1.12	

 $\overline{R = \Sigma ||Fo| - |Fc|| / \Sigma |Fo|; R_w} = [(\Sigma w((Fo^2 - Fc^2)^2) / \Sigma w(Fo^2)^2]^{1/2}$

Experimental section

Preparation of Complexes

${[Ag(\mu-4-Br-3,5-iPr_2pz)]_3}_2 ([Ag(L1Br)]_2)^1$

This complex was prepared by a procedure analogous to that used for [**Ag(L1Cl)**]₂, substituting Na**L1Br** (742 mg, 2.93 mmol). Colorless crystals (753 mg, 0.371 mmol, yield 76%) were isolated from hexane at -15 °C. Far-IR (CsI, cm⁻¹): 670w, 658w, 646w, 585m, 555m, 545w (C–Br), 505m (Ag–N), 405s, 366s, 344w, 242vs, 211s. Raman (solid, cm⁻¹): 2970vs (C-H, aliphatic), 2910vs (C–H, aliphatic), 2868vs (C–H, aliphatic), 2754w, 2713w, 1499m (C=N), 1486m, 1443s, 1431m, 1367vs, 1303m, 1280m, 1181m, 1145m, 1109m, 1091m, 1045m, 957m, 881s, 708w, 647m, 586w, 533s (C–Br), 506m (Ag–N), 401w, 331w, 239m, 186w (Ag···Ag). UV–Vis (solution, cyclohexane, λ_{max}/nm ($\epsilon/cm^{-1}mol^{-1}dm^{3}$)): 227 (38100). UV–Vis (solid, nujol, nm): 227.5. Emission (solid, 299 K, λ_{max}/nm): 312, 379, 620 (ex. 280 nm).

${[Ag(\mu-3,5-Ph_2pz)]_3}_2 ([Ag(L5H)]_2)^{2-3}$

A solution of NaL5H (688 mg, 2.84 mmol) in tetrahydrofuran (20 cm³) was added dropwise to a suspension of silver(I) nitrate (484 mg, 2.85 mmol) in tetrahydrofuran (10 cm³) over 15 min. The reaction was protected from light and after stirring for a few days, the solvent was evaporated under vacuum. The resulting solid was extracted with dichloromethane (40 cm³) to remove sodium nitrate. The filtrate was concentrated under vacuum to provide a white powder that was recrystallized from dichloromethane at -15 °C. These colorless crystals (615 mg, 0.313 mmol, yield 66%) were filtered and dried under vacuum. IR (KBr, cm⁻¹): 3061m (C–H, aliphatic), 3028m(C–H, aliphatic), 1943w, 1870w, 1799w, 1748w, 1603m, 1573m, 1538w, 1512w, 1496w, 1470vs (C=N), 1425m, 1400s, 1335m, 1322m, 1306m, 1275m, 1220w, 1156m, 1103s, 1071s, 1028m, 1002m, 992m, 978w, 908m, 801m, 752vs, 693vs, 553m, 507w, 437w. Far-IR (CsI, cm⁻¹): 618m, 553vs, 533m, 526w, 508vs (Ag–N), 479m, 450m, 439s, 415m, 405m, 359m, 288m, 233m, 194s, 178ws, 159w, 152w. Raman (solid, cm⁻¹): 3124m (C-H, aromatic), 3061m (C-H, aromatic), 1606vs, 1574w, 1537w, 1516m, 1464w (C=N), 1451w, 1428s, 1413m, 1404m, 1322w, 1296w, 1223w, 1182w, 1158w, 1102w, 1046w, 1030w, 1002s, 963m, 843w, 768w, 697w, 669w, 619w, 510w (Ag–N), 407w, 350w, 276w, 244w (Ag…Ag).). ¹H-NMR (CDCl₃, 500 MHz): δ 6.77 (s, 6H, pz-H), 7.15 (t, *J* = 7 Hz, 24H, *m*-Ph), 7.26 (t, *J* = 7 Hz, 12H,

p-Ph), 7.65 (d, J = 3.5 Hz, 24H, *o*-Ph). ¹³C-NMR (CDCl₃, 125 MHz): δ 101.7 (pz-*C*₄), 126.7 (*o*-Ph), 128.2 (*p*-Ph), 129.2 (*m*-Ph), 133.8 (Ph-*C*₁), 155.5 (pz-*C*_{3,5}). UV–Vis (solution, CH₂Cl₂, λ_{max}/nm ($\epsilon/cm^{-1}mol^{-1}dm^{3}$)): 253.5 (103000). UV–Vis (solid, nujol, nm): 257. Emission (solid, 299 K, λ_{max}/nm): 329, 649 (ex. 280 nm).

$[Ag(\mu-4-Br-3,5-Ph_2pz)]_3 ([Ag(L5Br)])^4$

This complex was prepared by a procedure analogous to that used for [**Ag(L5H)**], substituting Na**L5Br** (198 mg, 0.617 mmol). Colorless crystals (102.8 mg, 0.0422 mmol, yield 41%) were isolated from dichloromethane at -15 °C. IR (KBr, cm⁻¹): 3063m (C–H, aromatic), 3023m (C–H, aromatic), 2963w, 1948w, 1876w, 1802w, 1750w, 1603m, 1577w, 1462s (C=N), 1435m, 1319w, 1294w, 1262m, 1179w, 1137s, 1072m, 1030m, 992m, 980m, 911m, 840w, 805w, 765vs, 733m, 695vs, 596m, 547w, 486w, 459m, 429w, 409w. Far-IR (CsI, cm⁻¹): 669w, 618m, 597vs, 549s (C–Br), 499w, 488s (Ag–N), 460s, 432m, 406w, 387w, 331w, 316w, 284w, 254s, 231w, 205s, 163w, 153w. Raman (solid, cm⁻¹): 3066m (C-H, aromatic), 2986w, 1605vs, 1577w, 1553w, 1518s, 1465w (C=N), 1437s, 1402m, 1322w, 1296w, 1274w, 1181w, 1158w, 1034w, 1003s, 982m, 843w, 767w, 703w, 670m, 619w, 546w (C–Br), 488w (Ag–N), 408w, 331w, 253m, 241w, 221w, 202w. ¹³C-NMR (CDCl₃, 125 MHz): δ 128.2 (*o*-Ph), 128.9 (*m*-Ph). UV–Vis (solution, CH₂Cl₂, λ_{max} /nm (ϵ /cm⁻¹mol⁻¹dm³)): 242 (86000). UV–Vis (solid, nujol, nm): 252.5. Emission (solid, 299 K, λ_{max} /nm): 326.5, 449, 647 (ex. 280 nm).

Fig. S1 IR, far-IR, Raman spectra (left: **L1** complexes, right: **L5** complexes; (a) IR, (b) far-IR, (c) Raman; red: H, green: Cl, orange: Br, purple: I).

Table S2

Emission wavelengths (nm) at variable temperatures and 280 nm irradiation.

[Ag(L1H)] ₂	299 K	315.5, 493, 626.5
	173 K	314.5, 507, 623
	83 K	315, 329, 344.5, 361, 379, 397.5, 417, 620, 657, 687, 719.5
[Ag(L1Cl)]2	299 K	312, 373.5, 620, 721
	173 K	313, 365, 620.5, 705
	83 K	310.5, 358.5, 469.5, 618.5, 693.5
[Ag(L1Br)] ₂	299 K	312, 379, 620
	173 K	313.5, 371, 469, 620.5, 723
	83 K	313, 362.5, 479, 618.5, 712.5
$[Ag(L1I)]_n$	299 K	314, 363.5, 621, 700
	173 K	313.5, 358, 620, 688
	83 K	313, 354, 481, 535, 616.5, 682
[Ag(L5H)]2	299 K	329, 649
	173 K	323.5, 442, 449.5, 469.5, 639
	83 K	322.5, 423.5, 450, 470.5, 633
[Ag(L5Cl)]	299 K	320.5, 634.5
	173 K	315, 455, 475, 626
	83 K	315, 427.5, 454, 474, 623.5
[Ag(L5Br)]	299 K	326.5, 449, 647
	173 K	319, 427, 455, 478.5, 631.5
_	83 K	320, 427.5, 454.5, 483, 624

References

- 1 H. V. R. Dias, H. V. K. Diyabalanage, *Polyhedron*, 2006, **25**, 1655–1661.
- 2 H. H. Murray, R. G. Raptis, J. P. Fackler Jr., *Inorg. Chem.*, 1988, **27**, 26–33.
- 3 A. A. Mohamed, L. M. Pérez, J. P. Fackler Jr., *Inorg. Chim. Acta*, 2005, **358**, 1657–1662.
- 4 G. Yang, P. Baran, A.R. Martínez, R. G. Raptis, *Cryst. Growth Des.*, 2013, **13**, 264–269.