Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2014

Electronic supplementary information

Spectroscopic effects resulting from interacting singlet and triplet excited states: vibronic structure involving the O-H stretching mode in d-d absorption bands of Ni(H₂O)₆²⁺ Christopher Dobe,^a Emmanuel Gonzalez,^b Philip L. W. Tregenna-Piggott,^{a,x} Christian Reber^{b*}

^a Departement für Chemie und Biochimie, Universität Bern, CH-3012 Bern, Switzerland

^b Département de chimie, Université de Montréal, Montréal QC H3C 3J7, Canada

* author for correspondence, christian.reber@umontreal.ca, tel. +1-514-343-7332

^x Dedicated to the memory of our friend and colleague PLWTP

Contents

Table ESI1 Anisotropic displacement parameters (Å²x10³) for CsNi(H₂O)₆PO₄.

Table ESI2 Hydrogen bonds for $CsNi(H_2O)_6PO_4$ (Å and °).

Table ESI3. Ligand field and angular-overlap (AOM) parameters for $Ni(H_2O)_6(BrO_3)_2$ and $Cs[Ni(H_2O)_6](PO_4)$

Table ESI1 Anisotropic displacement parameters (Å²x10³) for CsNi(H₂O)₆PO₄. The anisotropic displacement factor exponent takes the form: $-2\pi^2(h^2 a^{*2}U^{11} + ... + 2 h k a^* b^* U^{12})$.

	U^{11}	U ²²	U ³³	U ²³	U13	U12
O(1)	31(2)	77(2)	77(2)	-44(3)	0	0
O(2)	32(1)	32(1)	32(1)	-4(1)	-4(1)	-4(1)

Table ESI2 Hydrogen bonds for CsNi(H₂O)₆PO₄ (Å and °).

D-HA	d(D-H)	d(HA)	d(DA)	D-H-A
O(1)-HO(2)	0.72(5)	1.93(4)	2.644(2)	174(6)

Table ESI3. Ligand field and angular-overlap (AOM) parameters for $Ni(BrO_3)_2$ ·6H₂O and $Cs[Ni(H_2O)_6](PO_4)$

Parameter	[Ni(H ₂ O) ₆](BrO ₃) ₂	$Cs[Ni(H_2O)_6](PO_4)$
B (cm ⁻¹)	950	950
C (cm ⁻¹)	3800	3800
Dq	6665	6330
$e_{\sigma}(cm^{-1})$	3520	3482
e_{π} (cm ⁻¹)	974	1029
$^{1}\mathrm{E_{g}}$	14622	14608
$^{3}T_{1g}(^{3}F)$	14343	14005
ζ (cm ⁻¹) (ζ =-2 λ for Ni ²⁺)	600	600
$E_g(^{1}E_g)$	15618	15445
$E_{g}(^{3}T_{1g})$	14054	13884
$A_{1g}({}^{3}T_{1g})$	13632	13289
$T_{1g}(^{3}T_{1g})$	14104	13765
$T_{2g}(^{3}T_{1g})$	14850	14519