Electronic Supplementary Information (ESI)

Two Chelating-Amine-Functionalized Lanthanide

Metal-Organic Frameworks for Adsorptions and Catalysis

Yu Zhu, Yan-Mei Wang, Pan Liu, Chang-Kun Xia, Yun-Long Wu, Xiao-Qing Lu and Ji-Min Xie*

School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang,

212013, China

Email: xiejm391@sohu.com; zhuyu0905@gmail.com

Fig S1. PXRD patterns of Er-DADQ and Eu-DADQ.

Fig S2. PXRD patterns of activated Er-DADQ.

Fig S3. PXRD patterns of Er-DADQ after immersing in different solvents for one week.

Fig S4. TG profiles of Er-DADQ (a) and Eu-DADQ (b)

Fig S5. IR spectra of H₂DADQ, Er-DADQ and Eu-DADQ.

Fig S6. Molecular structure of H₂DDQ, and H atoms were omitted for clarity.

Fig S7. Pore size distribution of Er-DDAQ.

Fig S8. PXRD pattern of Er-DADQ after the N_2 adsorption.

Fig S9. (A, C and E) UV-vis absorption spectra of RhB, MO and CV solutions in the presence of Er-DADQ. (B, D and E) the relationship between C_t/C_0 and reaction time (*t*) in the absorption of RhB, MO and CV.

Fig S10. Comparison of IR spectra between Er-DADQ and RhB absorbed Er-DADQ.

Fig S11. Separations process of two equal-mass dyes mixtures in Er-DADQ.

Fig S12. PXRD pattern of RhB absorbed Er-DADQ(green) and simulated Er-DADQ(black).

Fig S13. PXRD pattern of retrieved ER-DADQ as catalyst (red) and simulated Er-DADQ (black).

Compound	H ₂ DADQ	Er-DADQ	Eu-DADQ
Formula	$C_{25}H_{25}N_5O_6$	$C_{44}H_{43}ErN_8O_{15}$	$C_{44}H_{43}EuN_8O_{15}$
Formula weight	491.50	1091.12	1075.82
Crystal size / mm	$0.34 \times 0.26 \times 0.22$	$0.26 \times 0.22 \times 0.20$	$0.28 \times 0.24 \times 0.20$
Crystal system	triclinic	orthorhombic	orthorhombic
Space group	$P\overline{1}$	Pccn	Pccn
<i>a</i> (Å)	9.826 (2)	13.138 (3)	13.166(3)
<i>b</i> (Å)	11.358 (2)	33.947 (7)	34.112(7)
<i>c</i> (Å)	11.609 (2)	10.013 (2)	10.078(2)
α (°)	66.07 (3)	90.00	90.00
β (°)	84.95 (3)	90.00	90.00
γ (°)	78.63 (3)	90.00	90.00
$D_c(g \text{ cm}^{-3})$	1.406	1.623	1.579
Ζ	2	4	4
<i>F</i> (000)	516	2204	2184
Reflections collected	8826	13058	10771
Unique reflections	4152	4268	3787
μ (mm ⁻¹⁾	0.103	1.960	1.465
$R_1[I \ge 2\sigma(I)]$	0.0442	0.0466	0.0764
$wR_2[I \ge 2\sigma(I)]$	0.1092	0.1221	0.1858
max/min (e Å ⁻³)	0.208/-0.190	0.726/-0.867	0.946/-1.261
Goodness-of-fit on F^2	1.058	1.070	1.005

Table S1. Crystal data and structure refinements for the three compounds

H ₂ DADQ					
O1-C20	1.314(2)	O2-C20	1.224(2)	O3-C21	1.229(2)
O4-C21	1.317(2)	N1-C7	1.303(2)	N1-C5	1.376(2)
N2-C8	1.305(2)	N2-C6	1.376(2)	N3-C7	1.376(2)
N1-C5-C1	120.20(15)	N1-C5-C6	120.79(15)	C7-N1-C5	118.29(14)
C8-N4-C22	127.63(14)	C7-N3-C16	129.84(14)	N2-C6-C5	120.39(15)
Er-DADQ					
Er1-O1 #1	2.253(4)	Er1-O2 ^{#2}	2.317(4)	Er1-O4 #4	2.447 (4)
Er1-O5 #1	2.403(4)				
O1-Er1-O1#1	92.05(19)	O1-Er1-O2 ^{#2}	141.73(14)	O1-Er1-O2 ^{#3}	89.98(13)
O1-Er1-O5	80.48(14)	O1#1-Er1-O5	148.33(14)	O2#2-Er1-O5	78.03(14)
O2#3-Er1-O5	69.48(14)	O5-Er1-O5#1	120.83(18)	O1-Er1-O4#4	74.80(13)
O1 ^{#1} -Er1-O4 ^{#4}	72.58(14)	O2 ^{#2} -Er1-O2 ^{#3}	111.19(18)	O2 ^{#2} -Er1-O4 ^{#4}	141.27(14)
O2 ^{#3} -Er1-O4 ^{#4}	71.15(13)	O5-Er1-O4#4	132.98(14)	O5#1-Er1-O4#4	73.60(14)
Eu-DADQ					
Eu1-O1 #1	2.309(7)	Eu1-O2 ^{#2}	2.372(7)	Eu1-O4 #5	2.505(8)
Eu1-O5#1	2.436(9)				
O1-Eu1-O1#1	91.9(4)	O1-Eu1-O2#2	142.1(3)	O1#1-Eu1-O2#2	88.7(2)
O2 ^{#2} -Eu1-O2 ^{#3}	113.2(4)	O1-Eu1-O5	81.5(3)	O1#1-Eu1-O5	148.2(3)
O2#2-Eu1-O5	784(3)	O2-Eu1-O5#3	69.2 (3)	O5-Eu1-O5#1	119.3(4)
O1-Eu1-O4#5	72.5(3)	O1#1-Eu1-O4#5	75.8(3)	O2#2-Eu1-O4#5	71.0(3)
O2#3-Eu1-O4#5	139.3(3)	O5-Eu1-O4 ^{#5}	72.5(3)	O5#1-Eu1-O4#5	134.1(3)

Table S2. Selected bond lengths (Å) and angles (°) for the three compounds

^{#1} -x+1/2, -y+3/2, z; ^{#2} x, -y+3/2, z-1/2; ^{#3} -x+1/2, y, z-1/2; ^{#4} x+1/2, -y+2, -z+1/2; ^{#5} -x, y-1/2, -z+1/2; ^{#5} -x, y-1/2; ^{#5} -x, y-1/

Table S3 Recycling tests for cyanosilylation of benzaldehyde catalyzed by desolvated

 Er-DADQ for the same reaction time.

Run	Conversion (%)		
1 st	98.2		
2^{nd}	97.9		
3 rd	98.0		
4 th	97.7		
5 th	96.9		

Table S4 Test of heterogeneity of the reaction ^b

Catalyzed reaction		reacting after filtration		
Time(min	Yield (%)	Time(min)	Yield (%)	
)				
10	37	240	39	

b The catalyzed reaction was carried out for 10 min with Er-DDAQ ultrasonically. Then after filtration of the catalyst, the reaction was continued for another 4h. The yields were determined by GC-MS.