ESI

for

Phosphine Complexes of Aluminium(III) Halides – Preparation and Structural and

Spectroscopic Systematics

Jennifer Burt, William Levason, Mark E. Light and Gillian Reid

School of Chemistry, University of Southampton, Southampton SO171BJ, UK; email:

wxl@soton.ac.uk

Table S1. X-ray crystallographic data

Compound	$[o-C_6H_4(PMe_2)(PHMe_2)]_2$ [AlCl ₄][Cl]	$[o-C_6H_4(PMe_2)(PHMe_2)]_2$ $[AlBr_4][Br]$	$\begin{bmatrix} Cy_2HP(CH_2)_2PHCy_2 \\ [AlCl_4]_2 \end{bmatrix}$
Formula	C ₂₀ H ₃₄ AlCl ₅ P ₄	C ₂₀ H ₃₄ AlBr ₅ P ₄	$C_{26}H_{50}Al_2Cl_8P_2$
M	602.58	824.88	762.16
Crystal system	monoclinic	monoclinic	monoclinic
Space group	C2/c (no. 15)	C2/c (no. 15)	$P2_1/c$ (no. 14)
a /Å	14.599(5)	14.834(7)	7.073(6)
b /Å	20.672(7)	21.144(8)	17.551(13)
c /Å	11.006(5)	11.274(5)	14.924(13)
α/ °	90	90	90
β /°	115.061(5)	115.646(6)	101.682(15)
γ/°	90	90	90
$U/Å^3$	3009(2)	3188(2)	1814(3)
Ζ	4	4	2
μ (Mo-K _{α} /mm ⁻¹	0.733	6.540	0.775
F(000)	1248	1608	796
Total number reflns	18200	13640	10205
Unique reflns	3461	3631	3545
R _{int}	0.0930	0.0306	0.0741
No. of params, restraints	146, 0	146, 0	175, 0
$R_1, wR_2 [I > 2\sigma(I)]^{b}$	0.0640, 0.1041	0.0321, 0.0536	0.0884, 0.1658
R_1 , w R_2 (all data)	0.0859, 0.1111	0.0382, 0.0555	0.1146, 0.1786

Fig. S1. The structure of the cation in $[o-C_6H_4(PMe_2)(PHMe_2)]_2[AlCl_4][Cl]$ showing the atom labelling scheme. Ellipsoids are drawn at the 50% probability level and H atoms bonded to C are omitted for clarity. Selected bond lengths (Å): P1–C7 = 1.777(4), P1–C8 = 1.783(3), P1–C1 = 1.799(3), P1–H1 = 1.29(3), P2–C10 = 1.836(4), P2–C9 = 1.838(3), P2–C2 = 1.845(3). The cation in the isomorphous $[o-C_6H_4(PMe_2)(PHMe_2)]_2[AlBr_4][Br]$ has effectively identical dimensions.

Fig. S2. The structure of the centrosymmetric cation in $[Cy_2HP(CH_2)_2PHCy_2][AlCl_4]_2$ showing the atom labelling scheme. Ellipsoids are drawn at the 50% probability level and H atoms bonded to C are omitted for clarity. Symmetry operation: a = 1 - x, 1 - y, 2 - z. Selected bond lengths (Å): P1–C13 = 1.811(6), P1–C1 = 1.812(6), P1–C7 = 1.822(6), P1–H1 = 1.36(6).

These phosphonium salts were formed either by trace hydrolysis or as by-products (through reaction with the solvent) of the reactions of the diphosphanes with AIX_3 as described in the main text. The spectroscopic data are listed below:-

 $[Cy_2HP(CH_2)_2PHCy_2][AlCl_4]_2: {}^{31}P \text{ NMR } (CD_2Cl_2, 295 \text{ K}): \delta = 26.8 \text{ (d, } {}^{1}J_{PH} = 462 \text{ Hz}).$ $[o-C_6H_4(PMe_2)(PHMe_2)]_2[AlCl_4][Cl]: {}^{31}P \{{}^{1}\text{H}\} \text{ NMR } (CD_2Cl_2, 295 \text{ K}): \delta = -4.2 \text{ (d, } {}^{4}J_{PP} = 56 \text{ Hz}),$ $-51.9 \text{ (d, } {}^{4}J_{PP} = 56 \text{ Hz}). {}^{31}P \text{ NMR}: \delta = -4.2 \text{ (d, } {}^{1}J_{PH} = 540 \text{ Hz}).$

Analysis of M–X Bond Lengths in $[MX_4]^-$ (M = Al, Ga, I): Data taken from the Cambridge Structural Database (CSD version 5.34; latest update = May 2013) on the 21st January 2014. The data were analysed in Legacy Vista (version 2.1). The REFcodes used all contained discrete $[MX_4]^-$ molecules – those containing bonds to other atoms and structures containing any disorder were omitted.

Figure S3. Al–Cl Bond Length Distribution in $[AlCl_4]^-$ Data points = 915 from 184 REFcodes Range = 2.055 – 2.216 Å Mean Al–Cl bond length = 2.126±0.018 Å

3

Figure S4. Al–Br Bond Length Distribution in $[AlBr_4]^-$ Data points = 64 from 13 REFcodes Range = 2.244 – 2.320 Å Mean Al–Br bond length = 2.289±0.015 Å

Figure S5. Al–I Bond Length Distribution in [AlI₄]⁻

Data points = 12 from 3 REFcodes

Range = 2.506 – 2.555 Å

Mean Al–I bond length = 2.527 ± 0.012 Å

Al-I Bond Distance Distribution in All4-

Figure S6. Ga–Cl Bond Length Distribution in $[GaCl_4]^-$ Data points = 705 from 157 REFcodes Range = 2.036 - 2.258 Å Mean Ga–Cl bond length = 2.166 ± 0.018 Å

Figure S7. Ga–Br Bond Length Distribution in $[GaBr_4]^-$ Data points = 91 from 27 REFcodes Range = 2.277 - 2.361 Å Mean Ga–Br bond length = 2.321 ± 0.016 Å

Figure S8. Ga–I Bond Length Distribution in $[GaI_4]^-$ Data points = 31 from 8 REFcodes Range = 2.506 – 2.586 Å Mean Ga–I bond length = 2.544±0.018 Å

Figure S9. In–Cl Bond Length Distribution in [InCl₄]⁻

Data points = 26 from 7 REFcodes

Range = 2.295 – 2.368 Å

Mean In–Cl bond length = 2.337 ± 0.022 Å

Figure S10. In–Br Bond Length Distribution in $[InBr_4]^-$ Data points = 50 from 11 REFcodes Range = 2.438 - 2.510 Å

Mean In–Br bond length = 2.484 ± 0.018 Å

Figure S11. In–I Bond Length Distribution in $[InI_4]^-$ Data points = 35 from 8 REFcodes Range = 2.663 - 2.731 Å Mean In–I bond length = 2.702 ± 0.014 Å In-I Bond Length Distribution in InI4-

