Electron Supporting Information

For the Manuscript Entitled

Mononuclear complexes of amide-based ligands containing appended functional groups: Role of secondary coordination sphere on catalysis

Deepak Bansal,^a Gulshan Kumar,^a Geeta Hundal^b and Rajeev Gupta*^a

Figure S1. ¹H NMR spectrum of ligand H_2L^1 in CDCl₃. * Represents the residual solvent and/or adventitious H_2O .

Figure S2. ¹³C NMR spectrum of ligand H_2L^1 in CDCl₃. * Represents the residual solvent.

Figure S3. ¹H NMR spectrum of ligand H_2L^2 in CDCl₃. * Represents the residual solvent and/or adventitious H_2O .

Figure S4. ¹³C NMR spectrum of ligand H_2L^2 in CDCl₃. * Represents the residual solvent.

Figure S5. ¹H NMR spectrum of ligand H_2L^3 in D_6 -DMSO. * Represents the residual solvent and/or adventitious H_2O .

Figure S6. ¹³C NMR spectrum of ligand H₂L³ in d₆-DMSO. * Represents the residual solvent.

Figure S7. ESI⁺ mass spectrum of ligand H_2L^1 recorded in CHCl₃. Bottom panel displays a zoomed portion out of top panel.

8/7/2014 12:01:00 AM

Figure S8. ESI⁺ mass spectrum of ligand H_2L^2 recorded in CHCl₃. Bottom panel displays a zoomed portion out of top panel.

Figure S9. ESI⁺ mass spectrum of ligand H_2L^3 recorded in THF. Bottom panel displays a zoomed portion out of top panel.

Figure S10. Comparative FTIR spectra of complex 1 (red) and ligand H_2L^1 (black) showing shift of N–H stretches.

Figure S11. Comparative FTIR spectra of complex 2 (blue) and ligand H_2L^1 (black) showing shift of N–H stretches.

Figure S12. Comparative FTIR spectra of complex 3 (red) and ligand H_2L^2 (black) showing shift of N–H stretches.

Figure S13. Comparative FTIR spectra of complex 4 (blue) and ligand H_2L^2 (black) showing shift of N–H stretches.

Figure S14. Absorption spectra of ligands H_2L^1 , H_2L^2 and H_2L^3 and complexes 1-5 in DMF.

Figure S15. ¹H NMR spectrum of complex 1 in d_6 -DMSO. * Represents the residual solvent and/or adventitious water.

Figure S16. ¹H NMR spectrum of complex **2** in d_6 -DMSO. * Represents the residual solvent and/or adventitious water.

Figure S17. ¹H NMR spectrum of complex **3** in d_6 -DMSO. * Represents the residual solvent and/or adventitious water.

Figure S18. ¹H NMR spectrum of complex 4 in d_6 -DMSO. * Represents the residual solvent and/or adventitious water.

Figure S19. Thermal ellipsoidal representation of complex **3**. Thermal ellipsoids are drawn at 30% probability level whereas only selected hydrogen atoms are shown for clarity. Ringht panel: secondary coordination environment created by the protonated heterocyclic rings around the coordinated nitrate ion in complex **3**.

Figure S20. Thermal ellipsoidal representation of complex **4**. Thermal ellipsoids are drawn at 30% probability level whereas only selected hydrogen atoms are shown for clarity. Ringht panel: secondary coordination environment created by the protonated heterocyclic rings around the coordinated nitrate ion in complex **4**.

Figure S21. Weak interactions and packing diagram of complex 1 in a view along a axis. Selected hydrogen atoms have been shown for clarity.

Figure S22. Weak interactions and packing diagram of complex 2 in a view along b axis. Selected hydrogen atoms have been shown for clarity.

Figure S23. Weak interactions and packing diagram of complex 3 in a view along a axis. Selected hydrogen atoms have been shown for clarity.

Figure S24. Weak interactions and packing diagram of complex 4 in a view along a axis. Selected hydrogen atoms have been shown for clarity.

Figure S25. Weak interactions and packing diagram of complex 5 in a view along b axis. Selected hydrogen atoms have been shown for clarity.

Figure S26. Comparative X-ray powder diffraction patterns of complex **2** with simulated one (bottom) followed by as synthesized (middle) and after (top) ring opening reaction.

Figure S27. Comparative X-ray powder diffraction patterns of complex **3** with simulated one (bottom) followed by as synthesized (middle) and after (top) ring opening reaction.

Figure S28. Comparative FTIR spectra of complex **5** before (black) and after epoxidation of styrene (red).

Figure S29. Florescence titration of complex 1 with cyclohexene oxide in DMF-CHCl₃ (1:5). Top inset: change in emission intensity as a function of moles of cyclohexene oxide. Bottom inset: Linear regression fitting curve for 1:2 binding between complex 1 and cyclohexene oxide.

Figure S30. Benesi-Hildebrand plot of complex **1** assuming 1:1 stoichiometry for association between complex **1** and cyclohexene oxide.

Figure S31. Benesi-Hildebrand plot of complex **1** assuming 1:3 stoichiometry for association between complex **1** and cyclohexene oxide.

Figure S32. Change in emission intensity of complex 1 (1 mM) on addition of benzaldehyde in CHCl₃/DMF (5:1). λ_{ex} = 320 nm.

Figure S33. Florescence titration of complex 1 with 1-naphthaldehyde in DMF-CHCl₃ (1:5). Top inset: change in emission intensity as a function of moles of 1-naphthaldehyde. Bottom inset: Linear regression fitting curve for 1:2 binding between complex 1 and 1-naphthaldehyde.

Figure S34. Benesi-Hildebrand plot of complex **1** assuming 1:1 stoichiometry for association between complex **1** and 1-naphthaldehyde.

Figure S35. Benesi-Hildebrand plot of complex **1** assuming 1:3 stoichiometry for association between complex **1** and 1-naphthaldehyde.

Figure S36. Benesi-Hildebrand plot of complex **1** assuming 1:1 stoichiometry for association between complex **1** and 2-naphthaldehyde.

Figure S37. Benesi-Hildebrand plot of complex **1** assuming 1:3 stoichiometry for association between complex **1** and 2-naphthaldehyde.

Bond	1 ^[a]	3 ^[b]	4 ^[c]	Bond	5
M-N1	2.034(1)	2.038(2)	2.255(4)	Mn-N1	2.2234(2)
M-N2	2.173(1)	2.206(2)	2.378(3)	Mn-N2	2.3013(2)
M-O2	2.027(1)	2.043(2)	2.276(3)	Mn-N3	2.2701(2)
M-O4			2.546(3)	Mn-O3	2.1799(2)
O2#-M-O2	88.64(5)	84.34(9)	81.54(7)	Mn-O5	2.2052(2)
O2#-M-N1	135.68(3)	137.83(4)	139.46(8)	O3-Mn-N1	96.12(6)
O2#-M-N2	100.54(4)	97.37(6)	105.76(12)	O5-Mn-N1	90.45(6)
O2-M-N2	98.09(4)	102.84(6)	102.11(12)	O3-Mn-N3	87.52(6)
N1-M-N2#	76.93(3)	76.32(4)	71.54(7)	O5-Mn-N3	91.31(6)
N2-M-N2 [#]	153.86(5)	152.64(8)	143.08(14)	N1-Mn-N3	71.16(7)
				O3-Mn-N2	94.09(6)
				O5-Mn-N2	91.30(6)
				N1-Mn-N2	71.41(6)

Table S1. Selected bond lengths (Å) and bond angles (°) for complexes 1, 3, 4 and 5.

[a] # = -x+2, y, -z5/2; [b] # = -x, y, -z+1/2; [c] # = -x, y, -z+3/2.

Table S2. Selected bond lengths (Å) and bond angles (°) for complex $\mathbf{2}$.

Bond		2	
N2-Cd	2.366(6)	O9-Cd-N2	77.6(4)
N3-Cd	2.262(5)	N3-Cd-N4	70.83(2)
N4-Cd	2.405(5)	O3-Cd-N4	86.5(2)
O6-Cd	2.535(13)	O9-Cd-N4	118.5(3)
O7-Cd	2.488(13)	N2-Cd-N4	141.91(2)
O3-Cd	2.262(7)	O9-Cd-O7	158.2(4)
O9-Cd	2.474(12)	O9-Cd-N2	77.6(4)
N3-Cd-O3	157.1(2)	O6-Cd-O7	48.9(4)
N3-Cd-O9	110.4(4)	N2-Cd-O7	88.5(3)
O3-Cd-O9	77.8(4)	N4-Cd-O7	82.8(3)
N3-Cd-N2	71.25(2)	N3-Cd-O6	122.0(3)
O3-Cd-N2	131.67(3)	O3-Cd-O6	70.7(3)
N3-Cd-O7	80.1(3)	O9-Cd-O6	111.4(5)
O3-Cd-O7	100.0(3)	N2-Cd-O6	80.6(3)
N4-Cd-O6	118.5(3)		

Table S3. H-bonding parameters for complex 1	
--	--

D−H···A	$d(H \cdots A)(Å)$	$d(D \cdots A)(A)$	∠(DHA) (°)
N3–H3… O4 (i)	2.231(21)	2.869(2)	139.02(1.93)
C2-H2O3 (ii)	2.669(1)	3.177(2)	115.08(8)

(i)-x+2, -y+1, -z+2 (ii) -x+2, -y, -z+2

Table S4. H-bonding parameters for complex 2.

D–H···A	$d(H \cdots A)$ (Å)	$d(D \cdots A)$ (Å)	∠(DHA) (°)
C8–H8 O2 (i)	2.575(6)	2.831(9)	96.83(0.45)
C2-H2O4 (ii)	2.621(9)	3.223(12)	122.96(0.59)
C1-H1O5 (ii)	2.477(2)	3.378(19)	163.09(0.68)
N1-H1` O5 (i)	1.806(3)	2.726(23)	173.42(0.74)
N5–H5` O3 (i)	1.915(7)	2.747(10)	154.83(0.54)

(i) x, y, z (ii) –x+1, -y+1, -z

Table S5. H-bonding parameters for complex **3**.

D–H…A	$d(H \cdots A)(Å)$	$d(D \cdots A) (Å)$	\angle (DHA) (°)
C3–H3b O4 (i)	2.709(3)	3.255(4)	116.17(0.15)
C2–H2…O4 (i)	2.641(3)	3.130(4)	94.56(0.13)
C6–H6…O3 (ii)	2.583(2)	3.133(4)	118.33(0.13)

(i) x, -y, +z+1/2 (ii) x, -y+1, +z+1/2.

Table S6. H-bonding parameters for complex 4.

D–H···A	$d(H \cdots A)(Å)$	$d(D \cdots A)(A)$	\angle (DHA) (°)
C1–H1b O3 (i)	2.996(4)	3.136(5)	90.97(0.25)
N3–H1 O3 (i)	2.432(3)	2.995(5)	125.24(2.75)
C2–H2bO3 (ii)	2.714(4)	3.289(7)	118.48(0.28)
С6-Н6О4 (ііі)	2.587(3)	3.163(5)	120.55(0.23)

(i) -x+1, -y, -z+2 (ii) -x+1, +y, -z+1/2+2 (iii) x, -y+1, +z-1/2

D−H···A	$d(H \cdots A) (Å)$	$d(D \cdots A) (Å)$	\angle (DHA) (°)
O4a–H4… N4 (i)	1.876(1)	2.653(3)	155.60(5.01)
C10-H10O6(i)	2.578(2)	3.387(3)	145.69(0.16)
C17-H17O6(ii)	2.623(2)	3.443(3)	147.49(0.15)
O3-H3aO2(iii)	1.937(3)	2.705(2)	168.24(2.94)
O5-H5aO1(iv)	1.892(3)	2.682(2)	177.77(2.99)
O6-H6aO2(iv)	1.856(4)	2.798(2)	171.55(3.55)

Table S7. H-bonding parameters for complex 5.

(i) x, y, z (ii) x+1, +y, +z-1 (iii) -x+1, -y, -z (iv) -x, -y, -z

	1	2	3	4	5
Empirical formula	$C_{13}H_9ZnN_7O_8S_2$	$C_{27}H_{21}Cd_2N_{13}O_{14}S_4$	$C_{13}H_{13}ZnN_7O_8S_2$	$C_{13}H_{13}CdN_7O_8S_2$	C ₂₅ H ₂₈ MnN ₅ O ₆ S ₂
formula mass	522.82	1101.58	524.83	571.82	613.58
T [K]	293(2)	293(2)	293(2)	293(2)	293(2)
Crystal system	Monoclinic	Triclinic	Monoclinic	Monoclinic	Monoclinic
Space group	C2/c	<i>P</i> -1	C2/c	C2/c	P21/c
a [Å]	18.328(16)	8.983(3)	18.227(7)	18.417(4)	12.7166(4)
b [Å]	13.160(11)	9.998(5)	13.241(5)	12.981(5)	22.4097(8)
c [Å]	7.619(7)	11.870(4)	8.076(3)	8.292(4)	9.7068(3)
α [°]	90	114.861(4)	90	90	90
β [°]	104.262(4)	98.299(2)	105.998(2)	105.024(3)	100.694(3)
γ [°]	90	95.304(5)	90	90	90
V [Å3]	1781.2(3)	943.1(7)	1873.6(12)	1914.6(13)	2718.15(15)
Ζ	4	1	4	4	4
d [g cm–3]	1.950	1.940	1.861	1.984	1.499
μ[mm–1]	1.679	1.433	1.597	1.420	0.689
F(000)	1056	543	1064	1136	1272
R(int.)	0.0190	0.0521	0.0385	0.0574	0.0172
Final R indices	R1=0.0215	R1=0.0668	R1=0.0386	R1=0.0367	R1=0.0325
[I>2 $\sigma(I)$] ^{a,b}	wR2=0.0612	wR2=0.1801	wR2=0.0890	wR2=0.0620	wR2=0.0822
R indices	R1=0.0234	R1=0.0897	R1=0.0663	R1=0.0538	R1=0.0376
(all data)	wR2=0.0625	wR2=0.2019	wR2=0.0994	wR2=0.0697	wR2=0.0847
GOF on F2	0.987	3.297	1.009	1.109	1.029

Table S8. Crystallographic data collection and structural refinement parameters for complexes **1**-**5**.

 ${}^{a}R = \sum (\|Fo| - |Fc\|) / \sum |Fo|$, ${}^{b}wR = \{\sum [w(F_{o}^{2} - F_{c}^{2})^{2}] / \sum [w(F_{o}^{2})^{2}] \}^{1/2}$

Scheme S1. Proposed mechanism for the ring-opening reaction catalyzed by complex 1 as a representative example.