Electronic Supporting Information to

Alkali - Metal Ion Coordination in Uranyl(VI) Poly-Peroxide Complexes in Solution. Part 1, The Li⁺, Na⁺ and K⁺ - Peroxide – Hydroxide Systems.

Pier Luigi Zanonato, Plinio Di Bernardo, Valerie Vallet, Zoltán Szabó and Ingmar Grenthe

Figure S2. A comparison of the stepwise reaction heats (observed, blue diamonds; calculated, red crosses) for titration T3 of the system $Na^+ - UO_2^{++} - H_2O_2 - OH^-$. The speciation curves were calculated using the selected best fit model of Table 1. (UO_2)(OH)₄]²; • • • , [(UO_2)(OH)₄]²; • • • , [(UO_2)(OH)]⁻; • • • , $Na[(UO_2)(O_2)(OH)]_2^-$; • • • , $Na[(UO_2)(O_2)(OH)]_4^{3-}$.

Figure S3. A comparison of the stepwise reaction heats (observed, black diamonds; calculated, red crosses) for titration T3 of the system $K^+ - UO_2^{++} - H_2O_2 - OH^-$. The speciation curves were calculated using the selected best fit model of Table 1. (UO_2)(OH)₃]⁻; , [(UO_2)(OH)₄]²⁻; , [(UO_2)(OH)]⁻; , [(UO_2)(OH)]⁻; , K[(UO_2)(OH)]₂⁻; , K[(UO_2)(OH)]₄³⁻.

Tables S1 - S3

Composition of solutions used in the calorimetric titrations in the K^+ , Na^+ and Li^+ - uranyl(VI) - peroxide – hydroxide systems.

Potassium Complexes

Table S1 - Titrations with KNO ₃					
	Cell co	ontents			Titrant
	V° mL	C° _U mM	С° _{H2O2} mM	С° _{ОН} mM	С _{к,т} mM
T1	2.277	3.613	1.068	26.537	49.79
T2	2.255	2.413	2.441	16.986	49.79
Т3	2.275	3.622	3.612	25.480	49.79
T4	2.249	1.207	1.281	8.443	49.79
T5	2.255	3.619	5.466	25.439	49.79
T6	2.262	3.621	7.130	28.885	49.95
T7	2.267	3.620	4.545	29.139	49.95
T8	2.262	0.000	0.000	0.000	49.79

The titrations T2 - T7 in the Table S1 were used to calculate the thermodynamic parameters. Titration T1, with a large concentration of hydroxide complexes, was discarded because of the possible presence of systematic errors (see Text). Titration T8 was carried out to measure the dilution heat.

The observed (\diamondsuit) and calculated (+) stepwise reaction heats for the six titrations carried out to measure the stability constants and the enthalpies of the reactions shown below. The full lines in the plots represent the species distribution during the titrations according to the given color code.

Reaction $\log K \pm \sigma$ $\Delta H \pm \sigma$ $2UO_2^{2+} + 2HO_2^{-} + 2H_2O + K^+ \Rightarrow K[(UO_2)(O_2)(OH)]_2^{-} + 4H^+$ 0.9 ± 0.2 -85.0 ± 1.0 $4UO_2^{2+} + 4HO_2^{-} + 4H_2O + K^+ \Rightarrow K[(UO_2)(O_2)(OH)]_4^{3-} + 8H^+$ 1.3 ± 0.2 -174 ± 8

 $\sigma = 0.3525 \text{ mJ}$

 Q_{obs} (\diamondsuit); Q_{calc} (+)

Color code for the speciations:

$[(UO_2)(O_2)(OH)]^{-}$	
$K[(UO_2)(O_2)(OH)]_4^{3-}$	
$K[(UO_2)(O_2)(OH)]_2^-$	
[(UO ₂)(OH) ₃] ⁻	
$[(UO_2)(OH)_4]^{2-}$	

Sodium Complexes

Table S2 - Titrations with NaNO ₃					
		Cell	contents		Titrant
	V° mL	C° _U mM	C° _{H2O2} mM	С° _{ОН} mM	C _{Na,T} mM
T1	2.247	1.211	1.216	9.762	24.895
T2	2.247	2.414	2.454	19.425	24.895
T3	2.247	3.625	3.721	29.166	49.98
T4	2.251	3.624	2.49	27.75	49.98
Т5	2.251	2.428	2.422	28.112	24.895
T6	2.265	1.215	1.223	26.815	24.895
T7	2.263	3.627	4.512	30.066	49.98
T8	2.262	3.63	5.426	30.977	49.98
Т9	2.249	3.627	1.192	26.726	49.98
T10	2.246	0.000	0.000	0.000	24.895

The titrations T1 - T7 in the Table S2 were used to calculate the thermodynamic parameters. Titrations T8 and T9, with a large concentration of hydroxide complexes, were discarded because of the possible presence of systematic errors (see Text). Titration T10 was carried out to measure the dilution heat.

The observed (\diamondsuit) and calculated (+) stepwise reaction heats for the seven titrations carried out to measure the stability constants and the enthalpies of the reactions shown below. The full lines in the plots represent the species distribution during the titrations according to the given color code.

Reaction $2UO_2^{++}+2HO_2^{-}+2H_2O+Na^+ \Rightarrow Na[(UO_2)(O_2)(OH)]_2^{-}+4H^+$	logβ±σ 0.7±0.1	$\begin{array}{c} \Delta H \pm \sigma \\ \text{-77.8} \pm 0.2 \end{array}$
$4UO_2^{++}+4HO_2^{-}+4H_2O+Na^+ \Rightarrow Na[(UO_2)(O_2)(OH)]_4^{3-}+8H^+$	1.0±0.1	-164 ± 3

 $\sigma~=0.1826~mJ$

 $Q_{obs}\left(\diamondsuit\right);Q_{calc}\left(\clubsuit\right)$

Color code for the speciations:

$[(UO_2)(O_2)(OH)]^{-1}$	
$Na[(UO_2)(O_2)(OH)]_4^{3-}$	
$Na[(UO_2)(O_2)(OH)]_2^-$	
$[(UO_2)(OH)_3]^-$	
$[(UO_2)(OH)_4]^{2-}$	

Lithium Complexes

				5
Cell c	ontents			Titrant
V°		C° _{H2O2}	С°он	C _{Li,T}
mL	$C^{\circ}_{U} mM$	mM	mM	mM
2.274	3.623	3.664	29.033	49.72
2.258	2.405	2.449	19.321	49.72
2.247	1.210	1.230	9.701	49.72
2.262	3.620	4.725	29.080	49.72
2.256	3.638	5.782	29.238	49.82
2.263	0.000	0.000	0.000	49.72
	Cell c V° mL 2.274 2.258 2.247 2.262 2.256 2.263	V° C°U mM nL C°U mM 2.274 3.623 2.258 2.405 2.247 1.210 2.262 3.620 2.256 3.638 2.263 0.000	V° C° _{H2O2} mL C° _U mM mM 2.274 3.623 3.664 2.258 2.405 2.449 2.247 1.210 1.230 2.262 3.638 5.782 2.263 0.000 0.000	V° C° _{H2O2} C° _{OH} mL C° _U mM mM mM 2.274 3.623 3.664 29.033 2.258 2.405 2.449 19.321 2.247 1.210 1.230 9.701 2.262 3.620 4.725 29.080 2.256 3.638 5.782 29.238 2.263 0.000 0.000 0.000

The titrations T1 - T5 in the Table were used to calculate the thermodynamic parameters. Titration T5 was carried out to measure the dilution heat.

The observed (\diamondsuit) and calculated (+) stepwise reaction heats for the five titrations carried out to measure the stability constants and the enthalpies of the reactions shown below. The full lines in the plots represent the species distribution during the titrations according to the given color code.

Reaction $2UO_2^{++}+2HO_2^{-}+2H_2O+Li^+ \Rightarrow Li[(UO_2)(O_2)(OH)]_2^{-}+4H^+$	$log\beta\pm\sigma$ 0.0±0.2	$\begin{array}{c} \Delta H \pm \sigma \\ \text{-78.0} \pm 0.5 \end{array}$
$4UO_2^{++}+4HO_2^{-}+4H_2O+Li^+ \Rightarrow Li[(UO_2)(O_2)(OH)]_4^{3-}+8H^+$	-0.2±0.3	-162 ± 2

 $\sigma = 0.2133 \text{ mJ}$

 Q_{obs} (\diamondsuit); Q_{calc} (\clubsuit)

Color code for the speciations:

$[(UO_2)(O_2)(OH)]^-$	
$Li[(UO_2)(O_2)(OH)]_4^{3-}$	
$Li[(UO_2)(O_2)(OH)]_2^-$	
[(UO ₂)(OH) ₃] ⁻	
$[(UO_2)(OH)_4]^{2-}$	

Test solutions with 10 mM uranyl, 70 mM TMAOH and 70 mM peroxide and varying concentration of Na⁺ used in the ¹⁷O NMR experiments. The ratio between the peak integrals at 1174 ppm assigned to Na[(UO₂)(O₂)(OH)]₄³⁻ and 1088 ppm assigned to Na[(UO₂)(O₂)(OH)]₂⁻ were used to calculate the equilibrium constant for reaction (6): $2Na[(UO_2)(O_2)(OH)]_2^- \rightarrow Na[(UO_2)(O_2)(OH)]_4^{3-} + Na^+;$

Test solution	Test solution [Na ⁺] M Ratio between		$\log K(6)$
		1074 and 1088	
		ppm peaks	
(b)	0.07	74/21	0.10
(c)	0.13	69/27	0.09

Table S5

Electronic reaction in kJ/mol for different $Na[(UO_2)(O_2)(OH)_2]^-$ isomers computed at the M06L, M06, M06-2X and the MP2 level calculated in gas-phase. The coordinated water has not been included in the formulae for simplicity.

Isomer	Figure 4	MP2	M06L	M06	M06-2X
$Na_{yl}[(O_2)(UO_2)(\mu-\eta^2(O_2))(UO_2)(OH)_2]^{-1}$	а	0.0	0.0	0.0	0.0
$Na_{yl}[(OH)(O_2)(UO_2)(\mu-\eta^2(O_2))(UO_2)(OH)]^{-1}$	b	139.1	103.7	126.2	137.7
$Na_{term}[(O_2)(UO_2)(\mu-\eta^2(O_2))(UO_2)(OH)_2]^{-1}$	с	11.7	16.8	14.9	10.2
$Na_{term}[(O_2)(UO_2)(\mu-(OH)_2)(UO_2)(OH)_2]^{-1}$	d	70.9	52.1	64.5	76.3

The stability constants and reaction enthalpies of all the complexes involved into the solution equilibria and not containing the alkali ions, T 25 °C , μ = 0.100 M TMANO₃. Values taken from Ref. 1a

Reaction	$\log \beta$	$\Delta H^{\circ} \pm 3\sigma$ kJ/mol
$UO_2^{2+} + H_2O = [(UO_2)(OH)]^+ + H^+$	$\textbf{-5.20}\pm0.10$	46.5ª
$2UO_2^{2+} + 2H_2O = [(UO_2)_2(OH)_2]^{2+} + 2H^+$	-5.94 ± 0.03	49.1 ± 0.9
$3UO_2^{2+} + 4H_2O = [(UO_2)_3(OH)_4]^{2+} + 4H^+$	-12.25 ± 0.08	94.2 ± 3.0
$3UO_2^{2+} + 5H_2O = [(UO_2)_3(OH)_5]^+ + 5H^+$	-16.43 ± 0.02	123.5 ± 1.0
$3UO_2^{2+} + 6H_2O = [M_3(OH)_6]_{(aq)} + 6H^+$	-22.69 ± 0.12	132.2 ± 4.0
$3UO_2^{2+} + 7H_2O = [(UO_2)_3(OH)_7]^- + 7H^+$	-28.97 ± 0.07	198.2 ± 2.1
$3UO_2^{2+} + 8H_2O = [(UO_2)_3(OH)_8]^{2-} + 8H^+$	-38.84 ± 0.14	230.2 ± 2.7
$UO_2^{2+} + 3H_2O = [(UO_2)(OH)_3]^- + 3H^+$	-18.81 ± 0.17	93.7 ± 1.8
$UO_2^{2+} + 4H_2O = [(UO_2)(OH)_4]^{2-} + 4H^+$	-31.25 ± 0.5	167.6 ± 1.7
$H_2O = H^+ + OH^-$	-13.81 ± 0.03	57.4 ± 0.3
$\mathrm{H}^{+} + \mathrm{HO}_{2}^{-} = \mathrm{H}_{2}\mathrm{O}_{2}$	11.49 ± 0.02	-26.2 ± 0.6
$UO_2^{2+} + HO_2^{-} + H_2O = [(UO_2)(O_2)(OH)]^{-} + 2H^{+}$	-2.56 ± 0.07	- 43.4 ± 1.5
$2UO_2^{2+} + 2HO_2^{-} + H_2O = [(UO_2)_2 (O_2)_2(OH)]^{-} + 3H^{+}$	7.34 ± 0.16	- 91 ± 9

Distortion energies in kJ/mol computed at the MP2 level in gas-phase of the four-membered rings $[(UO_2)(O_2)(OH_2)_2]_4$ with geometries corresponding to those obtained with a coordinated M⁺-cation.

Geometry	ΔE
	[kJ/mol]
$[UO_2(O_2)(OH_2)_2]_4$	0.0
$Li[UO_2(O_2)(OH_2)_2]_4^+$	10.2
$Na[UO_2(O_2)(OH_2)_2]_4^+$	13.2
$K[UO_2(O_2)(OH_2)_2]_4^+$	12.7
$Rb[UO_2(O_2)(OH_2)_2]_4^+$	12.1
$Cs[UO_2(O_2)(OH_2)_2]_4^+$	10.4

Cartesian coordinates in Å of the four-membered rings without and with cations (TPSSH gas-phase geometries)

[UO₂(O₂)(OH₂)₂]₄

U	-2.1152133	-1.9922471	0.5257544
0	-1.9523047	0.0581017	1.5316624
0	-2.9107135	-2.7459649	1.9441268
0	-1.5514052	-1.4980376	-1.0939239
0	-3.2233898	0.0941849	0.8206087
U	-1.9922471	2.1152133	0.5257544
0	-2.7459649	2.9107135	1.9441268
0	-1.4980376	1.5514052	-1.0939239
0	0.0581017	1.9523047	1.5316624
0	0.0941849	3.2233898	0.8206087
U	2.1152133	1.9922471	0.5257544
0	2.9107135	2.7459649	1.9441268
0	1.5514052	1.4980376	-1.0939239
0	1.9523047	-0.0581017	1.5316624
0	3.2233898	-0.0941849	0.8206087
U	1.9922471	-2.1152133	0.5257544
0	2.7459649	-2.9107135	1.9441268
0	1.4980376	-1.5514052	-1.0939239
0	-0.0581017	-1.9523047	1.5316624
0	-0.0941849	-3.2233898	0.8206087
0	-2.4212556	-4.5427507	-0.1718177
Η	-2.5818096	-4.8076317	0.7509345
Η	-1.5104421	-4.8302310	-0.3473347
0	-4.2334489	-2.3248115	-1.0102488
Η	-3.7896755	-2.0587639	-1.8330822
Η	-4.4177895	-3.2712116	-1.1166795
0	-4.5427507	2.4212556	-0.1718177
Η	-4.8076317	2.5818096	0.7509345
Η	-4.8302310	1.5104421	-0.3473347
0	-2.3248115	4.2334489	-1.0102488
Η	-2.0587639	3.7896755	-1.8330822
Η	-3.2712116	4.4177895	-1.1166795
0	2.4212556	4.5427507	-0.1718177
Η	2.5818096	4.8076317	0.7509345
Η	1.5104421	4.8302310	-0.3473347
0	4.2334489	2.3248115	-1.0102488
Η	3.7896755	2.0587639	-1.8330822
Η	4.4177895	3.2712116	-1.1166795
0	4.5427507	-2.4212556	-0.1718177
Η	4.8076317	-2.5818096	0.7509345
Η	4.8302310	-1.5104421	-0.3473347
0	2.3248115	-4.2334489	-1.0102488
Η	2.0587639	-3.7896755	-1.8330822
Η	3.2712116	-4.4177895	-1.1166795

Li[UO₂(O₂)(OH₂)₂]₄⁺

0	-3.9578280	-0.6430688	1.8881172
U	-2.8533437	-0.4517539	0.5068279
0	-4.9283795	0.7266508	-0.5375620
0	-1.5749326	1.1418240	1.5362679
U	-0.4517539	2.8533437	0.5068279
0	0.7266508	4.9283795	-0.5375620
0	-1.9594157	-0.3307213	-1.0656407
0	-2.5917885	1.8789017	0.8055224
0	-1.1418240	-1.5749326	1.5362679
0	-1.8789017	-2.5917885	0.8055224
U	0.4517539	-2.8533437	0.5068279
0	-0.7266508	-4.9283795	-0.5375620
0	-0.6430688	3.9578280	1.8881172
0	-0.3307213	1.9594157	-1.0656407
0	1.1418240	1.5749326	1.5362679
U	2.8533437	0.4517539	0.5068279
0	4.9283795	-0.7266508	-0.5375620
0	1.8789017	2.5917885	0.8055224
0	3.9578280	0.6430688	1.8881172
0	1.9594157	0.3307213	-1.0656407
0	1.5749326	-1.1418240	1.5362679
0	2.5917885	-1.8789017	0.8055224
0	0.6430688	-3.9578280	1.8881172
0	0.3307213	-1.9594157	-1.0656407
0	-4.3913252	-2.1833839	-0.6567106
0	-2.1833839	4.3913252	-0.6567106
0	4.3913252	2.1833839	-0.6567106
0	2.1833839	-4.3913252	-0.6567106
Η	-4.7695320	-2.7798069	0.0093040
Η	-3.8992696	-2.7550285	-1.2669548
Η	-5.4866384	0.1337391	-1.0650877
Η	-5.4926805	1.0278415	0.1924513
Η	-2.7798069	4.7695320	0.0093040
Η	-2.7550285	3.8992696	-1.2669548
Н	0.1337391	5.4866384	-1.0650877
Η	1.0278415	5.4926805	0.1924513
Η	4.7695320	2.7798069	0.0093040
Η	3.8992696	2.7550285	-1.2669548
Η	5.4866384	-0.1337391	-1.0650877
Η	5.4926805	-1.0278415	0.1924513
Η	2.7798069	-4.7695320	0.0093040
Η	2.7550285	-3.8992696	-1.2669548
Η	-0.1337391	-5.4866384	-1.0650877
Η	-1.0278415	-5.4926805	0.1924513
Li	0.0000000	0.0000000	-1.3861391

Na[UO2(O2)(OH2)2]4⁺

0	-3.9055021	-0.6353641	1.8673696
U	-2.8910956	-0.4622357	0.4145877
0	-5.0406318	0.7085694	-0.4787010
0	-1.5550740	1.1238201	1.3673693
U	-0.4622357	2.8910956	0.4145877
0	0.7085694	5.0406318	-0.4787010
0	-2.1371315	-0.3710201	-1.2286480
0	-2.5998370	1.8780298	0.6951281
0	-1.1238201	-1.5550740	1.3673693
0	-1.8780298	-2.5998370	0.6951281
U	0.4622357	-2.8910956	0.4145877
0	-0.7085694	-5.0406318	-0.4787010
0	-0.6353641	3.9055021	1.8673696
0	-0.3710201	2.1371315	-1.2286480
0	1.1238201	1.5550740	1.3673693
U	2.8910956	0.4622357	0.4145877
0	5.0406318	-0.7085694	-0.4787010
0	1.8780298	2.5998370	0.6951281
0	3.9055021	0.6353641	1.8673696
0	2.1371315	0.3710201	-1.2286480
0	1.5550740	-1.1238201	1.3673693
0	2.5998370	-1.8780298	0.6951281
0	0.6353641	-3.9055021	1.8673696
0	0.3710201	-2.1371315	-1.2286480
0	-4.5263735	-2.2308136	-0.5432530
0	-2.2308136	4.5263735	-0.5432530
0	4.5263735	2.2308136	-0.5432530
0	2.2308136	-4.5263735	-0.5432530
Η	-4.8527268	-2.7627425	0.2005688
Η	-4.0844567	-2.8590593	-1.1356421
Η	-5.6423107	0.1189555	-0.9598012
Η	-5.5401458	1.0047396	0.2990508
Η	-2.7627425	4.8527268	0.2005688
Η	-2.8590593	4.0844567	-1.1356421
Η	0.1189555	5.6423107	-0.9598012
Η	1.0047396	5.5401458	0.2990508
Η	4.8527268	2.7627425	0.2005688
Η	4.0844567	2.8590593	-1.1356421
Η	5.6423107	-0.1189555	-0.9598012
Η	5.5401458	-1.0047396	0.2990508
Η	2.7627425	-4.8527268	0.2005688
Η	2.8590593	-4.0844567	-1.1356421
Η	-0.1189555	-5.6423107	-0.9598012
Η	-1.0047396	-5.5401458	0.2990508
Na	0.0000000	0.0000000	-1.9921154

K[UO₂(O₂)(OH₂)₂]₄⁺

		<i></i>	
0	-3.8807028	-0.6244500	1.8567439
U	-2.9012171	-0.4610571	0.3765953
0	-5.0859132	0.6946288	-0.4628693
0	-1.5496829	1.1220871	1.3043585
U	-0.4610571	2.9012171	0.3765953
0	0.6946288	5.0859132	-0.4628693
0	-2.2115175	-0.3839236	-1.2920911
0	-2.6026070	1.8836029	0.6514165
0	-1.1220871	-1.5496829	1.3043585
0	-1.8836029	-2.6026070	0.6514165
U	0.4610571	-2.9012171	0.3765953
0	-0.6946288	-5.0859132	-0.4628693
0	-0.6244500	3.8807028	1.8567439
0	-0.3839236	2.2115175	-1.2920911
0	1.1220871	1.5496829	1.3043585
U	2.9012171	0.4610571	0.3765953
0	5.0859132	-0.6946288	-0.4628693
0	1.8836029	2.6026070	0.6514165
0	3.8807028	0.6244500	1.8567439
0	2.2115175	0.3839236	-1.2920911
0	1.5496829	-1.1220871	1.3043585
0	2.6026070	-1.8836029	0.6514165
0	0.6244500	-3.8807028	1.8567439
0	0.3839236	-2.2115175	-1.2920911
0	-4.5832985	-2.2487937	-0.4764856
0	-2.2487937	4.5832985	-0.4764856
0	4.5832985	2.2487937	-0.4764856
0	2.2487937	-4.5832985	-0.4764856
Η	-4.8755429	-2.7310532	0.3142381
Η	-4.1553604	-2.9134417	-1.0384956
Η	-5.7021217	0.0822856	-0.8948102
Η	-5.5480512	1.0005457	0.3340979
Η	-2.7310532	4.8755429	0.3142381
Η	-2.9134417	4.1553604	-1.0384956
Η	0.0822856	5.7021217	-0.8948102
Η	1.0005457	5.5480512	0.3340979
Η	4.8755429	2.7310532	0.3142381
Η	4.1553604	2.9134417	-1.0384956
Η	5.7021217	-0.0822856	-0.8948102
Η	5.5480512	-1.0005457	0.3340979
Η	2.7310532	-4.8755429	0.3142381
Н	2.9134417	-4.1553604	-1.0384956
Н	-0.0822856	-5.7021217	-0.8948102
Н	-1.0005457	-5.5480512	0.3340979
Κ	0.0000000	0.0000000	-2.6907939

Rb[UO2(O2)(OH2)2]4⁺

Ο	-3.8760395	-0.6143717	1.8577354
U	-2.9055413	-0.4538961	0.3705714
0	-5.1033799	0.6902254	-0.4558277
0	-1.5460830	1.1255116	1.2911895
U	-0.4538961	2.9055413	0.3705714
0	0.6902254	5.1033799	-0.4558277
0	-2.2341524	-0.3772829	-1.3040386
0	-2.5992972	1.8917351	0.6435083
0	-1.1255116	-1.5460830	1.2911895
0	-1.8917351	-2.5992972	0.6435083
U	0.4538961	-2.9055413	0.3705714
0	-0.6902254	-5.1033799	-0.4558277
0	-0.6143717	3.8760395	1.8577354
0	-0.3772829	2.2341524	-1.3040386
0	1.1255116	1.5460830	1.2911895
U	2.9055413	0.4538961	0.3705714
0	5.1033799	-0.6902254	-0.4558277
0	1.8917351	2.5992972	0.6435083
0	3.8760395	0.6143717	1.8577354
0	2.2341524	0.3772829	-1.3040386
0	1.5460830	-1.1255116	1.2911895
0	2.5992972	-1.8917351	0.6435083
0	0.6143717	-3.8760395	1.8577354
0	0.3772829	-2.2341524	-1.3040386
0	-4.5965418	-2.2498268	-0.4592522
0	-2.2498268	4.5965418	-0.4592522
0	4.5965418	2.2498268	-0.4592522
0	2.2498268	-4.5965418	-0.4592522
Н	-4.8721070	-2.7238404	0.3424851
Η	-4.1659351	-2.9178339	-1.0152247
Η	-5.7163634	0.0653506	-0.8743610
Η	-5.5587170	0.9934480	0.3461056
Η	-2.7238404	4.8721070	0.3424851
Η	-2.9178339	4.1659351	-1.0152247
Н	0.0653506	5.7163634	-0.8743610
Н	0.9934480	5.5587170	0.3461056
Н	4.8721070	2.7238404	0.3424851
Η	4.1659351	2.9178339	-1.0152247
Η	5.7163634	-0.0653506	-0.8743610
Η	5.5587170	-0.9934480	0.3461056
Н	2.7238404	-4.8721070	0.3424851
Η	2.9178339	-4.1659351	-1.0152247
Η	-0.0653506	-5.7163634	-0.8743610
Η	-0.9934480	-5.5587170	0.3461056
Rb	0.0000000	0.0000000	-2.9715644

Cs[UO₂(O₂)(OH₂)₂]₄⁺

Ο	-3.8774327	-0.6133331	1.8562719
U	-2.9021783	-0.4519359	0.3717499
0	-5.1008323	0.6906781	-0.4587378
0	-1.5474461	1.1277077	1.2989976
U	-0.4519359	2.9021783	0.3717499
0	0.6906781	5.1008323	-0.4587378
0	-2.2287637	-0.3727083	-1.3013591
0	-2.5986363	1.8931369	0.6467432
0	-1.1277077	-1.5474461	1.2989976
0	-1.8931369	-2.5986363	0.6467432
U	0.4519359	-2.9021783	0.3717499
0	-0.6906781	-5.1008323	-0.4587378
0	-0.6133331	3.8774327	1.8562719
0	-0.3727083	2.2287637	-1.3013591
0	1.1277077	1.5474461	1.2989976
U	2.9021783	0.4519359	0.3717499
0	5.1008323	-0.6906781	-0.4587378
0	1.8931369	2.5986363	0.6467432
0	3.8774327	0.6133331	1.8562719
0	2.2287637	0.3727083	-1.3013591
0	1.5474461	-1.1277077	1.2989976
0	2.5986363	-1.8931369	0.6467432
0	0.6133331	-3.8774327	1.8562719
0	0.3727083	-2.2287637	-1.3013591
0	-4.5936740	-2.2514235	-0.4515823
0	-2.2514235	4.5936740	-0.4515823
0	4.5936740	2.2514235	-0.4515823
0	2.2514235	-4.5936740	-0.4515823
Η	-4.8715387	-2.7090069	0.3589729
Η	-4.1563134	-2.9298138	-0.9894549
Η	-5.7136258	0.0637771	-0.8745255
Η	-5.5542336	0.9930446	0.3446690
Η	-2.7090069	4.8715387	0.3589729
Η	-2.9298138	4.1563134	-0.9894549
Η	0.0637771	5.7136258	-0.8745255
Η	0.9930446	5.5542336	0.3446690
Η	4.8715387	2.7090069	0.3589729
Η	4.1563134	2.9298138	-0.9894549
Η	5.7136258	-0.0637771	-0.8745255
Η	5.5542336	-0.9930446	0.3446690
Η	2.7090069	-4.8715387	0.3589729
Η	2.9298138	-4.1563134	-0.9894549
Η	-0.0637771	-5.7136258	-0.8745255
Η	-0.9930446	-5.5542336	0.3446690
Cs	0.0000000	0.0000000	-3.2069796

Cartesian coordinates in Å of $Na[(UO_2)(O_2)(OH)_2]^-$ isomers (TPSSH-PCM geometries)

 $Na_{yl}[(O_2)(UO_2)(\mu \text{-} \eta_2(O_2))(UO_2)(OH)_2]^\text{-}$

0	2.074188	0.340426	-1.840008
U	2.266522	0.089276	-0.058689
0	0.085387	-0.754506	0.223594
U	-2.172403	-0.003329	-0.101023
0	-2.303076	-0.258535	1.716640
0	0.059575	0.708828	0.447675
0	2.494267	-0.179121	1.729645
0	2.827398	2.208355	0.188389
0	4.815157	-0.440486	-0.528030
0	2.809718	-2.097525	-0.446482
0	-4.251957	0.712739	-0.260992
0	-4.227217	-0.717829	-0.460754
0	-1.842363	0.240612	-1.877250
0	-2.235044	2.553810	0.222102
0	-2.156642	-2.558712	-0.431717
Η	2.824374	2.787203	-0.587933
Η	4.388827	-1.333808	-0.651285
Η	5.132845	-0.169167	-1.402446
Η	2.852869	-2.687429	0.320333
Η	-3.048055	2.896140	-0.181933
Η	-1.513565	3.052927	-0.190959
Η	-1.600156	-3.066601	0.178544
Η	-3.058226	-2.889543	-0.292811
Na	0.005593	-0.391786	2.619726

$Na_{yl}[(OH)(O_2)(UO_2)(\mu - \eta_2(O_2))(UO_2)(OH)]^{-}$

0	-1.676877	-0.370761	1.563184
U	0.093107	-0.048274	1.533924
0	-0.284239	1.617190	0.058522
0	0.673693	-2.188646	0.974060
0	0.649251	-2.083395	2.434732
U	0.044591	-4.484173	1.869384
0	0.239219	-4.317150	-0.819178
0	1.831714	0.424709	1.569151
0	0.092128	0.054920	4.083710
0	-0.548106	2.302548	2.562000
0	1.890386	-4.684004	1.878926
0	-0.301584	-6.656835	2.116096
0	-0.276460	-6.360717	0.700506
0	-1.740982	-4.069760	1.840084
0	0.034490	-4.537119	4.111687
Na	2.967402	-2.582812	1.807525
Η	0.654477	-0.614688	4.503097
Η	-0.618962	2.493937	1.589385
Η	-1.453574	2.352089	2.905390
Η	0.506695	2.038715	-0.310428
Η	-0.827578	-4.438803	4.540088
Η	1.063390	-3.869430	-1.063252
Η	0.434858	-5.269439	-0.878316
Η	0.378389	0.907574	4.447031

$Na_{term}[(O_2)(UO_2)(\mu \text{-} \eta_2(O_2))(UO_2)(OH)_2]^{\text{-}}$

0	-1.561330	0.602177	2.982015
U	0.032837	0.533833	2.123390
0	0.368117	2.663734	2.623387
0	-0.879999	1.356321	0.060304
0	-1.088423	-0.072568	0.243671
U	-0.324635	0.047926	-1.955361
0	0.106626	-2.244703	-0.821847
0	1.693846	0.413850	1.438926
0	-0.061299	-1.914783	1.833775
0	1.447891	0.313471	-1.592594
0	0.297559	-1.207509	-3.690980
0	0.219837	0.187600	-4.121842
0	-2.088039	-0.159366	-2.359012
Na	2.502641	-0.329840	-3.684617
0	0.966660	-1.065888	3.993606
0	-0.517290	2.507898	-2.697996
Η	-0.959915	-2.236481	2.004790
Η	0.390114	-1.172196	4.765217
Η	0.621687	-1.716231	3.296178
Η	1.194452	3.067634	2.320256
Η	-0.461413	-2.994395	-1.049585
Η	0.043365	-2.146309	0.187483
Η	-0.721121	2.561145	-3.644898
Η	-1.222167	3.004678	-2.254265

$Na_{term}[(O_2)(UO_2)(\mu-(OH)_2)(UO_2)(OH)_2]^-$

0	-1.698149	-0.547191	1.826840
U	0.117451	-0.477590	1.775860
0	1.944946	-0.485221	1.633747
0	0.138911	-2.394001	3.582518
0	0.247085	1.383101	2.975559
0	0.334327	0.250076	3.883294
0	-0.075224	1.179857	0.103234
U	-0.220198	0.126430	-2.186907
0	-0.905904	-2.391831	-2.549413
0	0.099901	-1.629653	-0.303348
0	0.414614	2.677507	-1.931705
0	-1.997231	0.400771	-1.886787
0	1.581137	-0.161094	-2.250463
0	-0.485638	-0.285401	-4.327129
0	-0.247410	1.123032	-4.140900
Na	2.554844	1.076070	3.485840
Η	-0.514816	-3.105158	3.496598
Η	-0.120543	-1.903247	4.379490
Η	-0.570368	-2.515925	-1.621811
Η	-0.294454	-2.872844	-3.126779
Η	0.518984	2.466396	-0.970637
Η	1.303190	2.849715	-2.276283
Η	1.040587	-1.803106	-0.473509
Η	-0.976910	1.522724	0.212692