Electric Supplemental Information for:

Coexistence of Interconnected and Interweaved Double Helixes in an Octamolybdate-based Compound: Synthesis, Structure, and Photocatalytic Properties[†]

Wenlong Sun, Chunjing Zhang, Huiyuan Ma*, Haijun Pang* and Shaobin Li

Table of contents:

- **1. Table S1.** Summarization of known double helical compounds based on POMs towards a specific disposition in I and/or II types.
- 2. Fig. S1. View of the helical channels in 1: (a) the channels formed by a pair of interweaved right- and left-handed helical chains and (b) the channels formed by a pair of interconnected right- and left-handed helical chains.
- **3.** Fig. S2. Detailed view of the $\pi \cdots \pi$ interactions in the inorganic-organic supramolecular layer.
- **4. Fig. S3.** The 3D topology of the network for **1**. Color code: $\{\beta$ -Mo₈O₂₆ $\}$, purple; $\{Cu(H_2O) N_2O_3\}$ octahedron, green.
- 5. Fig. S4. IR spectrum of 1.
- 6. Fig. S5. Output of a calculated powder X-ray patterns by *POWDER CELL*.

Table S1 Summarization of known double helical compounds based on POMs towards a specific

Compounds and structures	types	References
[Cu ₂ Mo ₂ O ₈ (4,4-bpy)] _n ·3nH ₂ O	Ι	<i>Lu et al.</i> <i>Chem.Commun.</i> 2002, 152–153
[NH ₄][Mo ₂ O ₄ Gd(H ₂ O) ₆ (L-C ₄ H ₂ O ₆) ₂]·4H ₂ O	Ι	<i>Lu et al.</i> <i>Chem.Commun.</i> 2003, 1284–1285
{A[Mo ₂ ^{VI} O ₄ Ln ^{III} (H ₂ O) ₆ (C ₄ H ₂ O ₆) ₂] ·4H ₂ O} _n	Ι	<i>Lu et al.</i> Dalton Trans. 2003, 3192–3198
$[{Co^{III} (phen)_2}_2V_8O_{23}]$	Ι	Wang et al. Eur. J. Inorg. Chem. 2004, 1385-1388
[{Zn(2,2-bpy)} ₂ V ₈ O ₂₁]	Ι	Wang et al. J.Mol.Struct. 2004, 691,123–131

disposition in I and/or II types.

[Ni(phen)H ₂ O][V ₂ O ₆]	Ι	Wang et al. J.Mol.Struct. 2007,840, 53–58
[(C ₆ H ₅ NO ₂)Ln(H ₂ O) ₅] ₂ [H ₂ W ₁₂ O ₄₀] · nH ₂ O	Ι	<i>Chen et al.</i> <i>Inorg. Chim. Acta</i> 2008, 361, 2508-2514
Assembly Na[Ag ₆ (pyttz) ₂ (H ₂ O)][PMo ₁₂ O ₄₀]	Ι	<i>Yan et al.</i> Dalton Trans. 2013, 42, 7803–7809
K[Ag ₁₄ (pyttz) ₄ (H ₂ O) ₂][PW ₁₂ O ₄₀] ₂ ·(OH)·5H ₂ O	Ι	<i>Yan et al.</i> <i>Chem. Asian J.</i> 2013, 8, 2254–2261
[Co(bimb)V ₂ O ₆]	Ι	<i>Ma et al.</i> <i>Inorg. Chem.</i> 2014, 53, 4541–4547

[(CH ₃) ₂ NH ₂]K ₄ [V ₁₀ O ₁₀ (H ₂ O) ₂ (OH) ₄ (PO ₄) ₇]·4 H ₂ O	Π	Haushalter and Zubieta et al. Science 1993, 259, 1596-1599
a) b) b	Π	Wang and Su et al. Angew. Chem. Int. Ed. 2005, 44, 1–5
(bpy)[Zn(4,4-bpy) ₂] ₂ [H ₄ ClV ₁₆ O ₃₈]·6H ₂ O and (bpy)[Co(4,4-bpy) ₂] ₂ [H ₄ ClV ₁₆ O ₃₈]·6H ₂ O	Π	Peng et al. J.Mol.Struct. 827, (2007), 50–55
[Cu ^{II} (L) ₂ (H ₂ O) ₂][Cu ^I ₂ (L) ₂]PMo ₁₂ O ₄₀	Π	Wang and Su et al. Chem.Commun . 2007, 4245–4247
[Cu(H ₂ O) ₂]H ₂ [Cu ₈ (dap) ₄ (H ₂ O) ₂ (α -B-	Π	Yang et al. Chem. Commun. 2008, 570–572
$GeW_9O_{34})_2]$ $GeW_9O_{34})_2]$ $GeW_9O_{34})_2]$ $GeW_9O_{34})_2]$ $GeW_9O_{34})_2]$ $GeW_9O_{34})_2]$ $GeW_9O_{34})_2]$ $GeW_9O_{34})_2]$	II	<i>Ali et al.</i> Polyhedron 2014, 68, 265–271

Fig. S1. View of the helical channels in 1: (a) the channels formed by a pair of interweaved right- and left-handed helical chains and (b) the channels formed by a pair of interconnected right- and left-handed helical chains.

Fig. S2. Detailed view of the $\pi \cdots \pi$ interactions in the inorganic-organic supramolecular layer.

Fig. S3. The 3D topology of the network for 1. Color code: $\{\beta$ -Mo₈O₂₆ $\}$, purple; $\{Cu(H_2O) N_2O_3\}$ octahedron, green.

Fig. S4. IR spectrum of 1.

