Supporting information

Synthesis, Structure, and Reactivity of the Base-Stabilized Silanone Molybdenum Complexes

Takako Muraoka^a, Keisuke Abe^a, Haruhiko Kimura^a, Youhei Haga^a, Keiji Ueno^a*, and Yusuke

Sunada^b

^aDivision of Molecular Science, Graduate School of Science and Technology, Gunma University,

Kiryu 376-8515, Japan.

^bInstitute for Materials Chemistry and Engineering, and Graduate School of Engineering Sciences,

Kyushu University, Kasuga, Fukuoka 816-8580, Japan.

*To whom correspondence should be addressed. Tel & fax: +81-277-30-1260. E-mail: ueno@gunma-u.ac.jp.

Table of Contents

- 1. General Experimental Methods
- 2. Synthetic Procedures
 - 2.1 Synthesis of **2a**
 - 2.2 Synthesis of **2b**
 - 2.3 Isolation of **3**
 - 2.4 Isolation of **4**
- 3. X-ray Crystallographic Determinations of 2a, 2b, and 3 and Molecular Structures of 2a, 2b and 3

4. References

1. General Experimental Methods. All manipulations were performed using either standard Schlenk tube techniques under nitrogen, vacuum line techniques, or a dry box under nitrogen. $[Cp*(OC)_2Mo(SiMe_3)(=SiMes_2)]$ (**1**, $Cp* = \eta^5 \cdot C_5Me_5$, $Mes = 2,4,6 \cdot Me_3C_6H_2$) was prepared according to the published procedure.¹ 4-(Dimethylamino)pyridine (DMAP) and pyridine-*N*-oxide (PNO) were recrystallized from toluene before use. Hexane and toluene were dried by refluxing over sodium benzophenone ketyl followed by distillation under a nitrogen atmosphere before use. C_6D_6 was dried over potassium mirror followed by distillation in vacuo before use.

NMR spectra were recorded on a JEOL JNM-AL300, JNM-AL500, JNM-ECS300, JNM-ECS400, or JNM-ECS600 Fourier transform spectrometer at room temperature. IR spectra were recorded on a JASCO FT/IR-600 Plus spectrometer at room temperature. Elemental analyses were performed by the Center for Material Research by Instrumental Analysis, Gunma University, or Institute for Materials Chemistry and Engineering, Kyushu University.

The X-ray intensity data were collected on a RIGAKU RAXIS-IV Imaging Plate diffractometer or a Rigaku VariMax with Saturn CCD diffractometer using graphite-monochromated Mo K α radiation at 93, 150, or 175 K. Empirical absorption corrections were applied. The structure was solved by direct and Fourier transform methods using the SHELX-97 systems.² All non-hydrogen atoms were refined by full-matrix least-squares techniques with anisotropic displacement parameters based on F^2 with all reflections. All hydrogen atoms except for **2b**-toluene were placed at their geometrically calculated positions and refined riding on the corresponding carbon atoms with isotropic thermal parameters.

2. Synthetic Procedures

2.1 Synthesis of $[Cp^*(OC)_2Mo(SiMe_3){O=SiMes_2(DMAP)}]$ (2a). To a toluene solution (5 mL) of $[Cp^*(OC)_2Mo(SiMe_3)(=SiMes_2)]$ (1, 60 mg, 9.6 × 10⁻⁵ mol) and DMAP (13 mg, 1.1 × 10⁻⁴ mol) was added 1 eq of PNO (8.4 mg, 8.8 × 10⁻⁵ mol) at -30 °C. The reaction mixture was stirred at -30 °C for 15 min. The solution was concentrated to ca. 1 mL in vacuo. The resulting solution was

diluted with hexane (2 mL) and cooled to -30 °C to afford orange crystals of $[Cp^{*}(OC)_{2}Mo(SiMe_{3})\{O=SiMes_{2}(DMAP)\}]$ (2a) in 64% yield (43 mg, 5.6 × 10⁻⁵ mol). ¹H NMR (300 MHz, C₆D₆) δ / ppm 8.05-8.03 (m, 2H, DMAP), 6.84 (s, 4H, *m*-H), 5.62-5.60 (m, 2H, DMAP), 2.51 (s, 12H, *o*-Me), 2.13 (s, 6H, *p*-Me), 1.93 (s, 15H, C₅Me₅), 1.74 (s, 6H, DMAP), 0.95 (s, 9H, SiMe_{3}). ¹³C{¹H} NMR (125.7 MHz, C₆D₆) δ / ppm 251.1 (CO), 155.3 (DMAP), 146.4 (DMAP), 145.3 (Mes), 139.4 (Mes), 134.9 (Mes), 129.9 (Mes), 105.6 (DMAP), 103.6 (*C*₅Me₅), 38.0 (DMAP), 25.1 (*o*-Me), 21.1 (*p*-Me), 11.6 (C₅Me₅), 7.7 (SiMe_3). ²⁹Si{¹H} NMR (99.3 MHz, C₆D₆) δ / ppm 32.4 (SiMe_{3}), -22.3 (SiMes_{2}). IR (KBr) ν_{CO} 1865 (s), 1770 (s) cm⁻¹. Anal. Calcd for **2a** C₄₀H₅₆MoN₂O₃Si₂: C, 62.80; H, 7.38; N, 3.66. Found: C, 63.06; H, 7.38; N, 3.47.

2.2 Synthesis of [Cp*(OC)₂Mo(SiMe₃){O=SiMe₅(PNO)}] (2b). To a toluene solution (6 mL) of [Cp*(OC)₂Mo(SiMe₃)(=SiMe₅)] (1, 100 mg, 1.60 × 10⁻⁴ mol) was added 2 eq of PNO (30 mg, 3.1 × 10⁻⁴ mol) at -30 °C. The reaction mixture was stirred at -30 °C for 15 min. The solution was concentrated to ca. 1 mL in vacuo. The resulting solution was diluted with hexane (15 mL) and cooled to -30 °C to afford dark red crystals of [Cp*(OC)₂Mo(SiMe₃){O=SiMes₂(PNO)}] (2b) in 64% yield (75 mg, 1.0×10^{-4} mol). ¹H NMR (300 MHz, C_6D_6) δ / ppm 8.39 (m, 2H, PNO), 6.69 (s, 4H, *m*-H), 6.34 (m, 2H, PNO), 6.07 (m, 1H, PNO), 2.75-2.54 (br, 12H, *o*-Me), 2.04 (s, 6H, *p*-Me), 1.88 (s, 15H, C_5Me_5), 0.85 (s, 9H, SiMe₃). ¹³C{¹H} NMR (125.7 MHz, C_6D_6) δ / ppm 221.3 (CO), 158.9 (PNO), 153.7 (Mes), 140.8 (Mes), 138.9 (Mes), 137.8 (PNO), 128.8 (Mes), 124.3 (PNO), 104.2 (C_5Me_5), 24.4 (*o*-Me), 21.0 (*p*-Me), 11.0 (C_5Me_5), 7.4 (SiMe₃). ²⁹Si{¹H} NMR (99.3 MHz, C_6D_6) δ / ppm 32.9 (SiMe₃), -13.9 (SiMes₂). IR (KBr) ν_{CO} 1858 (s), 1764 (s) cm⁻¹. Anal. Calcd for 2b·0.5toluene $C_{41.5}H_{55}MoNO_4Si_2$: C, 63.58; H, 7.07; N, 1.79. Found: C, 63.26; H, 6.84; N, 1.85.

2.3 Isolation of [Cp^*(OC)_2Mo(SiMe_3)(DMAP)] (3). A C₆D₆ (0.5 mL) solution of $[Cp^*(OC)_2Mo(SiMe_3)\{O=SiMes_2(DMAP)\}]$ (**2a**, 17 mg, 2.3 × 10⁻⁵ mol) was allowed to stand at 25 °C for 8 days. Volatiles were removed from the solution in vacuo. The residue was washed with hexane (1 mL × 3) to give yellow crystals of $[Cp^*(OC)_2Mo(SiMe_3)(DMAP)]$ (**3**) in 44% yield (5 mg,

 1×10^{-5} mol). ¹H NMR (300 MHz, C₆D₆) δ / ppm 8.19-8.17 (m, 2H, DMAP), 5.48-5.45 (m, 2H, DMAP), 1.96 (s, 6H, DMAP), 1.74 (s, 15H, C₅Me₅), 1.03 (s, 9H, SiMe₃). ¹³C{¹H} NMR (125.7 MHz, C₆D₆) δ / ppm 247.2 (CO), 158.0 (DMAP), 153.5 (DMAP), 107.5 (DMAP), 102.4 (C₅Me₅), 38.0 (DMAP), 11.0 (C₅Me₅), 7.3 (SiMe₃). ²⁹Si{¹H} NMR (99.3 MHz, C₆D₆) δ / ppm 32.4 (SiMe₃). IR (KBr) $v_{C=0}$ 1878 (s), 1796 (s) cm⁻¹. Anal. Calcd for **3** C₂₂H₃₄MoN₂O₂Si: C, 54.76; H, 7.10; N, 5.81. Found: C, 54.71; H, 6.88; N, 5.88.

2.4 Isolation of *cis*-[**Cp***(**OC**)₂**Mo**{**OSiMes**₂(**OSiMe**₃){**(PMe**₃)] (**4)**. To a toluene solution (25 mL) of [**Cp***(**OC**)₂**Mo**(**SiMe**₃){**O**=**SiMes**₂(**PNO**)}] (**2b**, 355 mg, 4.8 × 10⁻⁴ mol) was added excess **PMe**₃ (500 µl, 4.8 × 10⁻³ mol) at 25 °C. The reaction mixture was stirred at 25 °C for 19 h. Volatiles were removed from the solution in vacuo. The residue was extracted with pentane (3 mL) and the extract was filtered through a glass filter. Evaporation of volatiles from the filtrate in vacuo gave red-brown waxy solids of *cis*-[**Cp***(**OC**)₂**Mo**{**OSiMes**₂(**OSiMe**₃)}(**PMe**₃)] (**4**) in 75% yield (263 mg, 3.6 × 10⁻⁴ mol). ¹H NMR (400 MHz, C₆D₆) δ / ppm 6.84 (s, 2H, *m*-H), 6.82 (s, 2H, *m*-H), 2.56 (s, 6H, *o*-Me), 2.54 (s, 6H, *o*-Me), 2.21 (s, 3H, *p*-Me), 2.18 (s, 3H, *p*-Me), 1.59 (s, 15H, C₅Me₅), 1.13 (d, ²J_{H-P} = 12 Hz, 9H, PMe₃), 0.12 (s, 9H, SiMe₃). ¹³C{¹H}</sup> NMR (150.9 MHz, C₆D₆) δ / ppm 270.0 (d, ²J_{C-P} = 35 Hz, CO), 249.3 (d, ²J_{C-P} = 13 Hz, CO), 143.8 (Ar), 143.3 (Ar), 143.0 (Ar), 142.8 (Ar), 140.3 (Ar), 138.9 (Ar), 137.0 (Ar), 136.6 (Ar), 106.3 (*C*₅Me₅), 25.2 (*o*-Me), 25.1 (*o*-Me), 20.9 (*p*-Me), 20.8 (*p*-Me), 16.0 (d, ¹J_{C-P} = 24 Hz, PMe₃), 11.0 (C₅Me₅), 28 (SiMe₃). ³¹P{¹H} NMR (242.9 MHz, C₆D₆) δ / ppm 3.4 (PMe₃). ²⁹Si{¹H} NMR (119.2 MHz, C₆D₆) δ / ppm 3.2 (SiMe₃), -36.5 (SiMes₂). IR (KBr) 1931 (vs, *v*_{C=O}), 1833 (vs, *v*_{C=O}), 1018 (s, *v*_{Si-O-Si}) cm⁻¹. Anal. Calcd for **4** C₃dHs₅MoO₄PSi₂: C, 58.84; H, 7.54. Found: C, 59.16; H, 7.65.

3.X-raycrystalstructuredeterminationof $[Cp^*(OC)_2Mo(SiMe_3){O=SiMes_2(DMAP)} \cdot (C_6H_{14})_{0.5}]$ $(2a \cdot 0.5 hexane)$. A single crystal of $2a \cdot 0.5$ hexane suitable for X-ray crystal structure determination was obtained by recrystallization from aTHF/hexane solution of 2a. The final residue R1 and the weighted wR2 were 0.0420 and 0.0989,

respectively. Crystallographic data, atomic coordinates and equivalent isotropic displacement parameters, bond lengths and angles, and anisotropic displacement parameters are listed in Tables S-1, S-2, S-3, and S-4, respectively. ORTEP drawing of **2a** with atomic numbering schemes is shown in Figure S-1.

X-ray crystal structure determination of $[Cp^*(OC)_2Mo(SiMe_3){O=SiMes_2(PNO)}\cdot C_7H_8]$ (2b·toluene). A single crystal of 2b·toluene suitable for X-ray crystal structure determination was obtained by recrystallization from a toluene/hexane solution of 2b. The final residue *R*1 and the weighted *wR*2 were 0.1162 and 0.3162, respectively. Crystallographic data, atomic coordinates and equivalent isotropic displacement parameters, bond lengths and angles, and anisotropic displacement parameters are listed in Tables S-5 S-6 S-7 and S-8 respectively. ORTEP drawing of 2b with atomic numbering schemes is shown in Figure S-2.

X-ray crystal structure determination of [Cp*(OC)₂Mo(SiMe₃)(DMAP)] (3). A single crystal of 3 suitable for X-ray crystal structure determination was obtained by recrystallization from a toluene/hexane solution of 3. The final residue *R*1 and the weighted *wR*2 were 0.0284 and 0.0743, respectively. Crystallographic data, atomic coordinates and equivalent isotropic displacement parameters, bond lengths and angles, and anisotropic displacement parameters are listed in Tables S-9, S-10, S-11, and S-12, respectively. ORTEP drawing of 3 with atomic numbering schemes is shown in Figure S-3.

 Table S-1. Crystal data and structure refinement for complex 2a · 0.5 hexane.

Complex	$Cp^{*}(OC)_{2}Mo(SiMe_{3}) \{O=SiMes_{2}(DMAP)\} \cdot (C_{6}H_{14})_{0}$ (2a.0.5 hexane)		
Empirical formula	$C_{43}H_{63}MoN_2O_3Si_2$		
Formula weight	808.07		
Temperature (K)	93(2)		
Wavelength (Å)	0.71073		
Crystal system	Monoclinic		
Space group	$P2_{1}/c$		
Unit cell dimensions	a = 11.8339(11) Å		
	$b = 21.296(2) \text{ Å}$ $\beta = 102.9590(10)^{\circ}$		
	c = 17.1916(17) Å		
Volume (Å ³)	4222.2(7)		
Ζ	4		
D_{calc} (Mg / m ³)	1.271		
Absorption coefficient (mm ⁻¹)	4.058		
<i>F</i> (000)	1716		
Crystal Size (mm ³)	$0.060\times0.060\times0.040$		
θ Range for data collection (°)	3.04 - 27.49		
Index ranges	$-15 \le h \le 15, -27 \le k \le 27, -20 \le l \le 22$		
Reflections collected	34127		
Independent reflections [R(int)]	9672 [0.0566]		
Absorption correction	Semi-empirical from equivalents		
Maximum and minimum transmission	0.984 and 0.814		
Refinement method	Full-matrix least-squares on F^2		
Data / restraints / parameters	9672 / 76 / 506		
Goodness-of-fit on F ²	1.050		
Final <i>R</i> indices ^a $[I > 2\sigma(I)]$	R1 = 0.0420, wR2 = 0.0989		
<i>R</i> indices ^a (all data)	R1 = 0.0550, wR2 = 0.1064		
Largest difference in peak and hole (eÅ ⁻³)	0.711 and -0.617		

^a $R1 = \Sigma ||Fo| - |Fc|| / \Sigma |Fo|.$ $wR2 = [\Sigma[w (Fo^2 - Fc^2)^2] / \Sigma[w (Fo^2)^2]]^{0.5},$ calc $w = 1 / [\sigma^2(Fo^2) + (0.0545 P)^2 + 0.0000 P]$ where $P = (Fo^2 + 2Fc^2) / 3.$

	x	У	Ζ	U(eq)
Мо	2024(1)	6914(1)	1888(1)	196(1)
Si(1)	960(1)	6023(1)	977(1)	264(2)
Si(2)	5014(1)	6920(1)	3059(1)	196(1)
O(1)	3262(1)	6562(1)	531(1)	293(4)
O(2)	1722(2)	5708(1)	2853(1)	359(4)
O(3)	3716(1)	7066(1)	2680(1)	233(3)
N(1)	5420(2)	6261(1)	2450(1)	210(4)
N(2)	5970(2)	4700(1)	1119(1)	272(4)
C(1)	2827(2)	6669(1)	1068(1)	231(5)
C(2)	1887(2)	6149(1)	2482(1)	263(5)
C(3)	499(2)	6209(1)	-124(1)	335(6)
C(4)	-422(2)	5702(1)	1224(2)	418(7)
C(5)	1870(2)	5291(1)	997(2)	312(5)
C(6)	6015(2)	7590(1)	2953(1)	218(5)
C(7)	6663(2)	7927(1)	3611(1)	238(5)
C(8)	7472(2)	8372(1)	3498(1)	267(5)
C(9)	7676(2)	8504(1)	2748(2)	261(5)
C(10)	6972(2)	8212(1)	2099(1)	249(5)
C(11)	6137(2)	7773(1)	2179(1)	228(5)
C(12)	6504(2)	7835(1)	4453(1)	283(5)
C(13)	8631(2)	8945(1)	2637(2)	355(6)
C(14)	5367(2)	7521(1)	1416(1)	289(5)
C(15)	5335(2)	6498(1)	4058(1)	231(5)
C(16)	4459(2)	6391(1)	4490(1)	257(5)
C(17)	4691(2)	5992(1)	5157(1)	289(5)
C(18)	5752(2)	5708(1)	5436(1)	303(6)
C(19)	6616(2)	5837(1)	5038(1)	315(6)
C(20)	6433(2)	6217(1)	4359(1)	273(5)
C(21)	3297(2)	6707(1)	4302(1)	316(6)
C(22)	5945(3)	5290(1)	6159(2)	396(7)
C(23)	7466(2)	6310(1)	3986(2)	353(6)
C(24)	4709(2)	5754(1)	2362(1)	224(5)
C(25)	4873(2)	5230(1)	1949(1)	249(5)
C(26)	5809(2)	5197(1)	1564(1)	226(5)

Table S-2. Atomic coordinates (× 10⁴) and equivalent isotropic displacement parameters (Å² × 10³) for **2a** · 0.5 hexane. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

C(27)	6564(2)	5721(1)	1680(1)	262(5)
C(28)	6350(2)	6223(1)	2114(1)	250(5)
C(29)	5165(2)	4176(1)	995(2)	375(6)
C(30)	6953(2)	4689(1)	740(2)	364(6)
C(31)	1637(2)	7858(2)	2534(1)	297(6)
C(32)	616(2)	7500(1)	2398(1)	287(5)
C(33)	215(2)	7429(1)	1555(1)	289(5)
C(34)	1000(2)	7756(1)	1168(1)	290(5)
C(35)	1893(2)	8008(1)	1777(2)	297(6)
C(36)	2325(3)	8101(1)	3315(2)	429(7)
C(37)	4(2)	7263(1)	3016(2)	415(7)
C(38)	-991(2)	7224(2)	1152(2)	445(7)
C(39)	813(3)	7870(1)	293(2)	402(7)
C(40)	2891(2)	8408(1)	1670(2)	466(7)
C(41A)	10863(7)	5246(3)	6875(4)	69(2)
C(41B)	10840(20)	5029(10)	6839(9)	106(6)
C(42A)	10058(6)	4956(3)	6121(4)	85(2)
C(42B)	10456(16)	5323(6)	5995(9)	99(3)
C(43A)	10429(5)	5158(3)	5391(3)	82(2)
C(43B)	9871(15)	4843(6)	5410(6)	105(3)

2.5991(7) 2.178(2) 1.940(2) 1.948(2) 2.391(2) 2.399(2) 2.358(2) 2.354(2)	C(10)-C(11) C(11)-C(14) C(15)-C(16) C(15)-C(20) C(16)-C(17) C(16)-C(21) C(17)-C(18)	1.389(3) $1.517(3)$ $1.422(3)$ $1.420(3)$ $1.403(3)$ $1.501(3)$
2.178(2) 1.940(2) 1.948(2) 2.391(2) 2.399(2) 2.358(2) 2.354(2)	C(11)-C(14) C(15)-C(16) C(15)-C(20) C(16)-C(17) C(16)-C(21) C(17)-C(18)	1.517(3) 1.422(3) 1.420(3) 1.403(3) 1.501(3)
1.940(2) 1.948(2) 2.391(2) 2.399(2) 2.358(2) 2.354(2)	C(15)-C(16) C(15)-C(20) C(16)-C(17) C(16)-C(21) C(17)-C(18)	1.422(3) 1.420(3) 1.403(3) 1.501(3)
1.948(2) 2.391(2) 2.399(2) 2.358(2) 2.354(2)	C(15)-C(20) C(16)-C(17) C(16)-C(21) C(17)-C(18)	1.420(3) 1.403(3) 1.501(3)
2.391(2) 2.399(2) 2.358(2) 2.354(2)	C(16)-C(17) C(16)-C(21) C(17)-C(18)	1.403(3) 1.501(3)
2.399(2) 2.358(2) 2.354(2)	C(16)-C(21) C(17)-C(18)	1 501(3)
2.358(2) 2.354(2)	C(17) - C(18)	1.501(5)
2.354(2)	C(17) - C(10)	1.379(4)
	C(18)-C(19)	1.380(4)
2.340(2)	C(18)-C(22)	1.504(3)
1.890(3)	C(19)-C(20)	1.397(3)
1.906(3)	C(20)-C(23)	1.515(4)
1.890(3)	C(24)-C(25)	1.360(3)
1.560(2)	C(25)-C(26)	1.414(3)
1.876(2)	C(26)-C(27)	1.415(3)
1.899(2)	C(27)-C(28)	1.359(3)
1.888(2)	C(31)-C(32)	1.403(4)
1.176(3)	C(31)-C(35)	1.437(3)
1.176(3)	C(31)-C(36)	1.498(3)
1.357(3)	C(32)-C(33)	1.429(3)
1.355(3)	C(32)-C(37)	1.502(3)
1.345(3)	C(33)-C(34)	1.437(3)
1.452(3)	C(33)-C(38)	1.504(3)
1.456(3)	C(34)-C(35)	1.416(4)
1.412(3)	C(34)-C(39)	1.491(3)
1.425(3)	C(35)-C(40)	1.501(4)
1.392(3)	C(41A)-C(42A)	1.553(8)
1.512(3)	C(41B)-C(42B)	1.551(10)
1.394(3)	C(42A)-C(43A)	1.483(7)
1.381(3)	C(42B)-C(43B)	1.491(10)
1.514(3)		
137.59(4)	Si(1)-Mo-C(31)	140.94(6)
67.41(7)	Si(1)-Mo-C(32)	108.51(6)
67.63(7)	Si(1)-Mo-C(33)	84.39(6)
96.70(7)	O(3)-Si(2)-N(1)	105.50(9)
131.57(7)	O(3)-Si(2)-C(6)	112.92(9)
	2.356(2) 2.354(2) 2.354(2) 1.890(3) 1.906(3) 1.906(3) 1.890(3) 1.560(2) 1.876(2) 1.876(2) 1.899(2) 1.888(2) 1.176(3) 1.357(3) 1.355(3) 1.345(3) 1.345(3) 1.452(3) 1.452(3) 1.452(3) 1.456(3) 1.412(3) 1.392(3) 1.512(3) 1.394(3) 1.381(3) 1.514(3) 137.59(4) 67.63(7) 96.70(7) 131.57(7)	2.336(2) $C(17)-C(13)$ $2.354(2)$ $C(18)-C(19)$ $2.340(2)$ $C(18)-C(22)$ $1.890(3)$ $C(19)-C(20)$ $1.906(3)$ $C(20)-C(23)$ $1.890(3)$ $C(24)-C(25)$ $1.560(2)$ $C(25)-C(26)$ $1.876(2)$ $C(26)-C(27)$ $1.899(2)$ $C(27)-C(28)$ $1.888(2)$ $C(31)-C(32)$ $1.176(3)$ $C(31)-C(35)$ $1.176(3)$ $C(31)-C(36)$ $1.357(3)$ $C(32)-C(37)$ $1.345(3)$ $C(33)-C(34)$ $1.452(3)$ $C(33)-C(34)$ $1.456(3)$ $C(34)-C(35)$ $1.412(3)$ $C(34)-C(35)$ $1.412(3)$ $C(41A)-C(42A)$ $1.512(3)$ $C(41A)-C(42A)$ $1.512(3)$ $C(42A)-C(43A)$ $1.394(3)$ $C(42A)-C(43A)$ $1.381(3)$ $C(42B)-C(43B)$ $1.514(3)$ $Si(1)-Mo-C(32)$ $67.63(7)$ $Si(1)-Mo-C(33)$ $96.70(7)$ $O(3)-Si(2)-N(1)$ $131.57(7)$ $O(3)-Si(2)-C(6)$

O(3)-Mo-C(1)	87.87(8)	O(3)-Si(2)-C(15)	116.78(10)
O(3)-Mo-C(2)	88.22(8)	N(1)-Si(2)-C(6)	105.44(9)
O(3)-Mo-C(31)	80.20(7)	N(1)-Si(2)-C(15)	97.30(9)
O(3)-Mo-C(32)	108.10(7)	C(6)-Si(2)-C(15)	116.22(9)
O(3)-Mo-C(33)	137.72(7)	Mo-O(3)-Si(2)	155.91(10)
O(3)-Mo-C(34)	120.55(8)	Si(2)-N(1)-C(24)	115.31(15)
O(3)-Mo-C(35)	86.45(8)	Si(2)-N(1)-C(28)	128.10(15)
C(1)-Mo-C(2)	105.52(10)	C(24)-N(1)-C(28)	116.54(19)
C(1)-Mo-C(31)	137.75(9)	C(26)-N(2)-C(29)	121.1(2)
C(1)-Mo-C(32)	154.03(9)	C(26)-N(2)-C(30)	119.8(2)
C(1)-Mo-C(33)	120.97(9)	C(29)-N(2)-C(30)	118.0(2)
C(1)-Mo-C(34)	95.83(9)	Mo-C(1)-O(1)	174.2(2)
C(1)-Mo-C(35)	104.07(9)	Mo-C(2)-O(2)	174.4(2)
C(2)-Mo-C(31)	114.36(10)	Si(2)-C(6)-C(7)	123.10(17)
C(2)-Mo-C(32)	95.57(9)	Si(2)-C(6)-C(11)	119.59(16)
C(2)-Mo-C(33)	109.77(9)	C(7)-C(6)-C(11)	117.3(2)
C(2)-Mo-C(34)	144.95(9)	C(6)-C(7)-C(8)	120.1(2)
C(2)-Mo-C(35)	149.69(9)	C(6)-C(7)-C(12)	122.6(2)
C(31)-Mo-C(32)	34.07(9)	C(8)-C(7)-C(12)	117.3(2)
C(31)-Mo-C(33)	57.57(8)	C(7)-C(8)-C(9)	122.3(2)
C(31)-Mo-C(34)	58.25(8)	C(8)-C(9)-C(10)	117.2(2)
C(31)-Mo-C(35)	35.35(8)	C(8)-C(9)-C(13)	122.1(2)
C(32)-Mo-C(33)	34.93(8)	C(10)-C(9)-C(13)	120.7(2)
C(32)-Mo-C(34)	58.54(8)	C(9)-C(10)-C(11)	122.5(2)
C(32)-Mo-C(35)	58.22(9)	C(6)-C(11)-C(10)	120.0(2)
C(33)-Mo-C(34)	35.52(8)	C(6)-C(11)-C(14)	123.0(2)
C(33)-Mo-C(35)	58.49(9)	C(10)-C(11)-C(14)	117.0(2)
C(34)-Mo-C(35)	35.11(9)	Si(2)-C(15)-C(16)	121.83(17)
Mo-Si(1)-C(3)	116.22(9)	Si(2)-C(15)-C(20)	120.65(17)
Mo-Si(1)-C(4)	116.89(9)	C(16)-C(15)-C(20)	117.2(2)
Mo-Si(1)-C(5)	113.19(8)	C(15)-C(16)-C(17)	119.5(2)
C(3)-Si(1)-C(4)	103.24(12)	C(15)-C(16)-C(21)	123.7(2)
C(3)-Si(1)-C(5)	103.09(12)	C(17)-C(16)-C(21)	116.7(2)
C(4)-Si(1)-C(5)	102.35(12)	C(16)-C(17)-C(18)	123.1(2)
C(17)-C(18)-C(19)	117.3(2)	C(31)-C(32)-C(33)	107.7(2)
C(17)-C(18)-C(22)	120.3(2)	C(31)-C(32)-C(37)	126.8(2)
C(19)-C(18)-C(22)	122.4(2)	C(33)-C(32)-C(37)	125.4(2)
C(18)-C(19)-C(20)	122.4(2)	Mo-C(33)-C(32)	74.09(13)

C(15)-C(20)-C(19)	120.4(2)	Mo-C(33)-C(34)	72.05(13)
C(15)-C(20)-C(23)	123.4(2)	Mo-C(33)-C(38)	133.86(18)
C(19)-C(20)-C(23)	116.1(2)	C(32)-C(33)-C(34)	108.4(2)
N(1)-C(24)-C(25)	123.7(2)	C(32)-C(33)-C(38)	124.2(2)
C(24)-C(25)-C(26)	120.2(2)	C(34)-C(33)-C(38)	124.9(2)
N(2)-C(26)-C(25)	122.0(2)	Mo-C(34)-C(33)	72.43(13)
N(2)-C(26)-C(27)	122.4(2)	Mo-C(34)-C(35)	71.92(13)
C(25)-C(26)-C(27)	115.6(2)	Mo-C(34)-C(39)	126.64(18)
C(26)-C(27)-C(28)	120.5(2)	C(33)-C(34)-C(35)	107.2(2)
N(1)-C(28)-C(27)	123.4(2)	C(33)-C(34)-C(39)	125.5(2)
Mo-C(31)-C(32)	73.30(14)	C(35)-C(34)-C(39)	127.0(2)
Mo-C(31)-C(35)	70.40(13)	Mo-C(35)-C(31)	74.25(14)
Mo-C(31)-C(36)	125.76(17)	Mo-C(35)-C(34)	72.97(14)
C(32)-C(31)-C(35)	108.6(2)	Mo-C(35)-C(40)	122.36(17)
C(32)-C(31)-C(36)	127.7(2)	C(31)-C(35)-C(34)	108.1(2)
C(35)-C(31)-C(36)	123.6(3)	C(31)-C(35)-C(40)	124.6(2)
Mo-C(32)-C(31)	72.63(13)	C(34)-C(35)-C(40)	127.1(2)
Mo-C(32)-C(33)	70.98(13)	C(41A)-C(42A)-C(43A)	110.4(6)
Mo-C(32)-C(37)	124.65(17)	C(41B)-C(42B)-C(43B)	110.4(9)

	U_{11}	<i>U</i> ₂₂	U ₃₃	<i>U</i> ₂₃	<i>U</i> ₁₃	U_{12}
Мо	19(1)	22(1)	18(1)	-2(1)	5(1)	1(1)
Si(1)	22(1)	32(1)	27(1)	-5(1)	7(1)	-6(1)
Si(2)	21(1)	20(1)	18(1)	-1(1)	5(1)	1(1)
O(1)	30(1)	34(1)	27(1)	-11(1)	14(1)	-8(1)
O(2)	41(1)	33(1)	35(1)	6(1)	11(1)	-3(1)
O(3)	23(1)	26(1)	20(1)	-3(1)	3(1)	0(1)
N(1)	22(1)	21(1)	21(1)	0(1)	8(1)	1(1)
N(2)	30(1)	21(1)	33(1)	-7(1)	13(1)	-1(1)
C(1)	21(1)	22(1)	25(1)	-3(1)	2(1)	-4(1)
C(2)	24(1)	32(1)	24(1)	-3(1)	6(1)	0(1)
C(3)	27(1)	41(2)	31(1)	-8(1)	4(1)	-5(1)
C(4)	30(1)	53(2)	44(2)	-10(1)	12(1)	-16(1)
C(5)	35(1)	29(1)	31(1)	-7(1)	10(1)	-9(1)
C(6)	19(1)	22(1)	24(1)	0(1)	4(1)	2(1)
C(7)	22(1)	24(1)	24(1)	-2(1)	2(1)	7(1)
C(8)	25(1)	23(1)	29(1)	-5(1)	-1(1)	2(1)
C(9)	23(1)	22(1)	33(1)	-1(1)	6(1)	2(1)
C(10)	29(1)	21(1)	25(1)	2(1)	7(1)	3(1)
C(11)	26(1)	20(1)	23(1)	0(1)	6(1)	2(1)
C(12)	33(1)	30(1)	21(1)	-4(1)	2(1)	1(1)
C(13)	34(1)	29(1)	43(2)	-3(1)	8(1)	-6(1)
C(14)	35(1)	29(1)	23(1)	1(1)	6(1)	-6(1)
C(15)	28(1)	23(1)	19(1)	-2(1)	5(1)	0(1)
C(16)	32(1)	25(1)	20(1)	-4(1)	6(1)	-2(1)
C(17)	44(2)	24(1)	21(1)	-3(1)	13(1)	-4(1)
C(18)	47(2)	20(1)	22(1)	-3(1)	3(1)	-1(1)
C(19)	37(1)	26(1)	28(1)	0(1)	0(1)	7(1)
C(20)	32(1)	25(1)	24(1)	-3(1)	5(1)	4(1)
C(21)	35(1)	39(1)	24(1)	-1(1)	13(1)	3(1)
C(22)	63(2)	27(1)	26(1)	3(1)	4(1)	-2(1)
C(23)	26(1)	40(2)	38(2)	4(1)	3(1)	7(1)
C(24)	20(1)	24(1)	25(1)	2(1)	8(1)	1(1)
C(25)	23(1)	22(1)	31(1)	0(1)	7(1)	-1(1)
C(26)	24(1)	20(1)	24(1)	0(1)	6(1)	2(1)

Table S-4. Anisotropic displacement parameters $(Å^2 \times 10^3)$ for $2\mathbf{a} \cdot 0.5$ hexane. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11} + ... + 2hka^*b^*U_{12}]$

C(27)	27(1)	25(1)	30(1)	-3(1)	15(1)	-1(1)
C(28)	25(1)	22(1)	28(1)	-4(1)	9(1)	-3(1)
C(29)	33(1)	26(1)	54(2)	-14(1)	10(1)	-4(1)
C(30)	51(2)	27(1)	39(2)	-7(1)	25(1)	2(1)
C(31)	36(1)	26(1)	26(1)	-6(1)	3(1)	12(1)
C(32)	31(1)	33(1)	24(1)	1(1)	10(1)	15(1)
C(33)	23(1)	37(1)	27(1)	-4(1)	5(1)	12(1)
C(34)	30(1)	31(1)	26(1)	3(1)	7(1)	12(1)
C(35)	34(1)	21(1)	34(1)	2(1)	9(1)	8(1)
C(36)	50(2)	35(2)	37(2)	-14(1)	-4(1)	15(1)
C(37)	41(2)	54(2)	34(2)	5(1)	18(1)	19(1)
C(38)	22(1)	66(2)	44(2)	-9(2)	3(1)	14(1)
C(39)	45(2)	51(2)	26(1)	9(1)	8(1)	12(1)
C(40)	47(2)	29(2)	65(2)	4(1)	14(2)	2(1)
C(41A)	69(4)	53(4)	102(4)	22(3)	52(3)	16(3)
C(41B)	120(10)	106(11)	94(7)	19(8)	26(8)	6(10)
C(42A)	97(4)	81(4)	90(4)	24(3)	46(3)	20(3)
C(42B)	117(6)	83(6)	95(5)	36(5)	24(6)	11(5)
C(43A)	102(4)	68(4)	85(4)	13(3)	39(3)	28(3)
C(43B)	134(7)	81(6)	94(5)	22(6)	14(6)	40(5)

Figure S-1. ORTEP drawing of 2a (thermal ellipsoids at the 50% probability level).

Table S-5. Crystal data and structure refinement for complex 2b·toluene.

Complex	$Cp^{*}(OC)_{2}Mo(SiMe_{3}){O=SiMes_{2}(PNO)}\cdot C_{7}H_{8}$ (2b ·toluene)
Empirical formula	$C_{45}H_{59}MoNO_4Si_2$
Formula weight	830.05
Temperature (K)	175(2)
Wavelength (Å)	0.71073
Crystal system	Triclinic
Space group	<i>P</i> -1
Unit cell dimensions	$a = 11.73(2)$ Å $\alpha = 99.65(9)^{\circ}$
	$b = 11.98(3)$ Å $\beta = 91.68(8)^{\circ}$
	$c = 15.85(6)$ Å $\gamma = 97.94(9)$ °
Volume (Å ³)	2172(11)
Ζ	2
$D_{\text{calc}} (\text{Mg} / \text{m}^3)$	1.269
Absorption coefficient (mm ⁻¹)	0.398
<i>F</i> (000)	876
Crystal Size (mm ³)	0.2 imes 0.2 imes 0.05
θ Range for data collection (°)	1.31 - 25.00
Index ranges	$-12 \le h \le 13, -14 \le k \le 14, -18 \le l \le 18$
Reflections collected	19447
Independent reflections [R(int)]	7181 [0.1889]
Absorption correction	Semi-empirical from equivalents
Maximum and minimum transmission	1.000 and 0.6778
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	7181 / 250 / 533
Goodness-of-fit on F ²	1.176
Final <i>R</i> indices ^a $[I > 2\sigma(I)]$	R1 = 0.1162, w $R2 = 0.3162$
<i>R</i> indices ^a (all data)	R1 = 0.1302, w $R2 = 0.3296$
Largest difference in peak and hole (eÅ-3)	2.803 and -0.515

^a $R1 = \Sigma ||Fo| - |Fc|| / \Sigma |Fo|.$ $wR2 = [\Sigma[w (Fo^2 - Fc^2)^2] / \Sigma[w (Fo^2)^2]]^{0.5},$ calc $w = 1 / [\sigma^2(Fo^2) + (0.1380 P)^2 + 4.6356 P]$ where $P = (Fo^2 + 2Fc^2) / 3.$

	x	У	Ζ	U(eq)
Мо	5392(1)	2648(1)	7731(1)	58(1)
Si(1)	4450(3)	3124(3)	6335(2)	90(1)
Si(2)	7951(2)	1349(2)	8000(2)	56(1)
O(1)	7245(8)	3917(9)	6736(7)	118(3)
O(2)	4071(8)	496(7)	6550(5)	107(3)
O(3)	6711(5)	1654(5)	8053(4)	59(1)
O(4)	8673(5)	2027(5)	7220(4)	64(2)
Ν	8499(7)	1605(7)	6396(5)	71(2)
C(1)	6544(9)	3375(10)	7065(8)	80(3)
C(2)	4638(10)	1312(9)	6944(6)	76(3)
C(3)	2835(11)	2578(12)	6109(8)	99(4)
C(4)	5119(17)	2448(18)	5324(8)	153(8)
C(5)	4648(13)	4708(14)	6275(10)	124(5)
C(6)	8927(7)	1914(7)	8974(5)	54(2)
C(7)	9656(6)	2992(6)	9108(5)	50(2)
C(8)	10410(7)	3289(7)	9840(6)	61(2)
C(9)	10435(8)	2621(8)	10463(6)	63(2)
C(10)	9668(8)	1621(8)	10345(6)	67(2)
C(11)	8922(8)	1276(7)	9643(6)	59(2)
C(12)	9687(8)	3829(7)	8506(6)	64(2)
C(13)	11286(11)	2959(10)	11220(7)	91(3)
C(14)	8074(10)	181(8)	9602(7)	78(3)
C(15)	8102(7)	-188(7)	7538(5)	59(2)
C(16)	9171(8)	-511(8)	7324(5)	60(2)
C(17)	9217(9)	-1591(8)	6856(6)	67(2)
C(18)	8247(11)	-2381(8)	6596(6)	74(3)
C(19)	7225(10)	-2104(8)	6854(7)	75(3)
C(20)	7107(8)	-1057(8)	7346(7)	69(2)
C(21)	10283(8)	266(9)	7594(7)	73(3)
C(22)	8389(16)	-3557(10)	6079(9)	122(5)
C(23)	5923(10)	-917(10)	7651(10)	103(4)
C(24)	9385(11)	1735(11)	5925(7)	92(4)
C(25)	9288(13)	1244(14)	5076(8)	107(4)
C(26)	8250(13)	717(13)	4699(8)	106(4)

Table S-6. Atomic coordinates (× 10⁴) and equivalent isotropic displacement parameters (Å² × 10³) for **2b** toluene. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

C(27)	7333(11)	627(11)	5199(7)	90(3)
C(28)	7445(9)	1069(9)	6065(6)	76(3)
C(29)	4916(10)	2591(10)	9165(7)	77(3)
C(30)	5686(9)	3628(11)	9147(7)	88(4)
C(31)	5095(9)	4300(9)	8684(7)	78(3)
C(32)	3990(8)	3674(9)	8409(6)	69(2)
C(33)	3919(9)	2636(9)	8722(7)	76(3)
C(34)	5182(16)	1659(15)	9601(9)	135(7)
C(35)	6875(12)	3953(18)	9590(9)	153(8)
C(36)	5470(14)	5532(11)	8557(11)	124(6)
C(37)	2999(12)	4146(14)	8092(9)	115(5)
C(38)	2836(11)	1741(13)	8620(10)	117(5)
C(51)	12244(16)	-2780(16)	7390(11)	107(5)
C(52)	11345(16)	-3582(18)	7559(9)	98(6)
C(53)	10826(14)	-4436(16)	6903(13)	106(6)
C(54)	11207(17)	-4497(17)	6077(11)	116(7)
C(55)	12107(19)	-3690(20)	5907(9)	110(6)
C(56)	12625(16)	-2832(18)	6564(13)	110(7)
C(57)	12840(30)	-1990(30)	7950(20)	124(12)
C(61)	12183(18)	-3426(17)	6514(11)	114(6)
C(62)	12869(19)	-2363(18)	6681(12)	112(7)
C(63)	12980(20)	-1730(16)	7506(14)	113(7)
C(64)	12410(20)	-2160(20)	8164(11)	116(8)
C(65)	11719(19)	-3220(20)	7997(12)	119(7)
C(66)	11608(17)	-3856(16)	7172(14)	111(6)
C(67)	12010(50)	-4170(40)	5810(30)	230(30)

Mo-Si(1)	2.626(8)	C(17)-C(18)	1.380(15)
Mo-O(3)	2.176(7)	C(18)-C(19)	1.345(16)
Mo-C(1)	1.940(11)	C(18)-C(22)	1.539(15)
Mo-C(2)	1.942(11)	C(19)-C(20)	1.388(14)
Mo-C(29)	2.366(13)	C(20)-C(23)	1.505(16)
Mo-C(30)	2.344(12)	C(24)-C(25)	1.370(18)
Mo-C(31)	2.355(11)	C(25)-C(26)	1.36(2)
Mo-C(32)	2.366(10)	C(26)-C(27)	1.357(18)
Mo-C(33)	2.369(11)	C(27)-C(28)	1.381(15)
Si(1)-C(3)	1.918(14)	C(29)-C(30)	1.437(17)
Si(1)-C(4)	1.911(15)	C(29)-C(33)	1.358(15)
Si(1)-C(5)	1.899(17)	C(29)-C(34)	1.471(17)
Si(2)-O(3)	1.550(7)	C(30)-C(31)	1.410(18)
Si(2)-O(4)	1.764(7)	C(30)-C(35)	1.513(16)
Si(2)-C(6)	1.867(10)	C(31)-C(32)	1.422(14)
Si(2)-C(15)	1.899(10)	C(31)-C(36)	1.530(17)
O(1)-C(1)	1.166(12)	C(32)-C(33)	1.407(15)
O(2)-C(2)	1.175(12)	C(32)-C(37)	1.471(16)
O(4)-N	1.317(11)	C(33)-C(38)	1.531(14)
N-C(24)	1.305(13)	C(51)-C(52)	1.3900
N-C(28)	1.359(13)	C(51)-C(56)	1.3900
C(6)-C(7)	1.427(11)	C(51)-C(57)	1.29(3)
C(6)-C(11)	1.407(12)	C(52)-C(53)	1.3900
C(7)-C(8)	1.403(12)	C(53)-C(54)	1.3900
C(7)-C(12)	1.494(12)	C(54)-C(55)	1.3900
C(8)-C(9)	1.374(13)	C(55)-C(56)	1.3900
C(9)-C(10)	1.380(13)	C(61)-C(62)	1.3900
C(9)-C(13)	1.501(13)	C(61)-C(66)	1.3900
C(10)-C(11)	1.364(13)	C(61)-C(67)	1.30(3)
C(11)-C(14)	1.523(12)	C(62)-C(63)	1.3900
C(15)-C(16)	1.397(13)	C(63)-C(64)	1.3900
C(15)-C(20)	1.441(12)	C(64)-C(65)	1.3900
C(16)-C(17)	1.389(13)	C(65)-C(66)	1.3900
C(16)-C(21)	1.500(13)		
Si(1)-Mo-O(3)	137.25(18)	C(32)-Mo-C(33)	34.6(4)

Si(1)-Mo-C(1)	68.8(4)	Mo-Si(1)-C(3)	116.1(4)
Si(1)-Mo-C(2)	66.0(4)	Mo-Si(1)-C(4)	112.0(5)
Si(1)-Mo-C(29)	138.1(3)	Mo-Si(1)-C(5)	114.0(5)
Si(1)-Mo-C(30)	133.1(4)	C(3)-Si(1)-C(4)	103.1(8)
Si(1)-Mo-C(31)	98.2(4)	C(3)-Si(1)-C(5)	106.4(6)
Si(1)-Mo-C(32)	83.2(3)	C(4)-Si(1)-C(5)	103.9(8)
Si(1)-Mo-C(33)	105.4(4)	O(3)-Si(2)-O(4)	109.4(4)
O(3)-Mo-C(1)	86.1(4)	O(3)-Si(2)-C(6)	115.6(4)
O(3)-Mo-C(2)	89.3(4)	O(3)-Si(2)-C(15)	116.9(4)
O(3)-Mo-C(29)	82.6(3)	O(4)-Si(2)-C(6)	101.7(4)
O(3)-Mo-C(30)	86.3(4)	O(4)-Si(2)-C(15)	98.6(4)
O(3)-Mo-C(31)	119.7(4)	C(6)-Si(2)-C(15)	111.9(4)
O(3)-Mo-C(32)	139.4(4)	Mo-O(3)-Si(2)	151.2(4)
O(3)-Mo-C(33)	111.2(4)	Si(2)-O(4)-N	121.4(6)
C(1)-Mo-C(2)	104.6(6)	O(4)-N-C(24)	116.5(9)
C(1)-Mo-C(29)	141.3(5)	O(4)-N-C(28)	121.0(8)
C(1)-Mo-C(30)	107.1(5)	C(24)-N-C(28)	122.4(10)
C(1)-Mo-C(31)	97.6(5)	Mo-C(1)-O(1)	172.6(12)
C(1)-Mo-C(32)	120.8(4)	Mo-C(2)-O(2)	170.9(10)
C(1)-Mo-C(33)	154.2(4)	Si(2)-C(6)-C(7)	124.0(6)
C(2)-Mo-C(29)	112.1(5)	Si(2)-C(6)-C(11)	119.(6)
C(2)-Mo-C(30)	147.6(5)	C(7)-C(6)-C(11)	116.8(8)
C(2)-Mo-C(31)	144.7(4)	C(6)-C(7)-C(8)	118.8(8)
C(2)-Mo-C(32)	109.8(4)	C(6)-C(7)-C(12)	124.1(7)
C(2)-Mo-C(33)	94.9(4)	C(8)-C(7)-C(12)	117.1(7)
C(29)-Mo-C(30)	35.5(4)	C(7)-C(8)-C(9)	123.1(8)
C(29)-Mo-C(31)	58.0(4)	C(8)-C(9)-C(10)	116.8(8)
C(29)-Mo-C(32)	57.2(4)	C(8)-C(9)-C(13)	121.0(9)
C(29)-Mo-C(33)	33.3(4)	C(10)-C(9)-C(13)	122.2(9)
C(30)-Mo-C(31)	34.9(4)	C(9)-C(10)-C(11)	123.0(9)
C(30)-Mo-C(32)	58.2(4)	C(6)-C(11)-C(10)	121.2(8)
C(30)-Mo-C(33)	57.4(4)	C(6)-C(11)-C(14)	120.5(8)
C(31)-Mo-C(32)	35.1(3)	C(10)-C(11)-C(14)	118.3(8)
C(31)-Mo-C(33)	57.5(4)	Si(2)-C(15)-C(16)	121.6(6)
Si(2)-C(15)-C(20)	121.2(7)	Mo-C(31)-C(36)	125.4(8)
C(16)-C(15)-C(20)	117.1(8)	C(30)-C(31)-C(32)	107.9(10)
C(15)-C(16)-C(17)	119.5(9)	C(30)-C(31)-C(36)	128.3(12)
C(15)-C(16)-C(21)	122.2(8)	C(32)-C(31)-C(36)	123.5(12)

C(17)-C(16)-C(21)	118.3(9)	Mo-C(32)-C(31)	72.1(6)
C(16)-C(17)-C(18)	122.9(10)	Mo-C(32)-C(33)	72.8(6)
C(17)-C(18)-C(19)	117.9(9)	Mo-C(32)-C(37)	133.7(8)
C(17)-C(18)-C(22)	119.0(12)	C(31)-C(32)-C(33)	106.9(9)
C(19)-C(18)-C(22)	123.1(12)	C(31)-C(32)-C(37)	125.9(11)
C(18)-C(19)-C(20)	122.9(10)	C(33)-C(32)-C(37)	125.0(11)
C(15)-C(20)-C(19)	119.2(10)	Mo-C(33)-C(29)	73.2(6)
C(15)-C(20)-C(23)	124.3(10)	Mo-C(33)-C(32)	72.6(5)
C(19)-C(20)-C(23)	116.5(9)	Mo-C(33)-C(38)	124.0(7)
N-C(24)-C(25)	119.6(12)	C(29)-C(33)-C(32)	110.0(9)
C(24)-C(25)-C(26)	120.7(13)	C(29)-C(33)-C(38)	125.9(12)
C(25)-C(26)-C(27)	118.3(12)	C(32)-C(33)-C(38)	123.9(12)
C(26)-C(27)-C(28)	121.0(11)	C(52)-C(51)-C(56)	120.0
N-C(28)-C(27)	117.8(10)	C(52)-C(51)-C(57)	126.0(19)
Mo-C(29)-C(30)	71.4(6)	C(56)-C(51)-C(57)	113.9(19)
Mo-C(29)-C(33)	73.4(6)	C(51)-C(52)-C(53)	120.0
Mo-C(29)-C(34)	121.4(8)	C(52)-C(53)-C(54)	120.0
C(30)-C(29)-C(33)	108.2(10)	C(53)-C(54)-C(55)	120.0
C(30)-C(29)-C(34)	124.9(13)	C(54)-C(55)-C(56)	120.0
C(33)-C(29)-C(34)	126.9(13)	C(51)-C(56)-C(55)	120.0
Mo-C(30)-C(29)	73.1(6)	C(62)-C(61)-C(66)	120.0
Mo-C(30)-C(31)	72.9(6)	C(62)-C(61)-C(67)	130(2)
Mo-C(30)-C(35)	122.1(8)	C(66)-C(61)-C(67)	110(2)
C(29)-C(30)-C(31)	106.9(10)	C(61)-C(62)-C(63)	120.0
C(29)-C(30)-C(35)	125.8(14)	C(62)-C(63)-C(64)	120.0
C(31)-C(30)-C(35)	127.2(14)	C(63)-C(64)-C(65)	120.0
Mo-C(31)-C(30)	72.1(6)	C(64)-C(65)-C(66)	120.0
Mo-C(31)-C(32)	72.9(6)	C(61)-C(66)-C(65)	120.0

Table S-8. Anisotropic displacement parameters ($\mathring{A}^2 \times 10^3$) for **2b** toluene. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11} + ... + 2hka^*b^*U_{12}]$

	U_{11}	U_{22}	U ₃₃	U ₂₃	<i>U</i> ₁₃	<i>U</i> ₁₂
Мо	49(1)	71(1)	52(1)	3(1)	2(1)	10(1)

Si(1)	81(2)	122(3)	78(2)	35(2)	5(2)	33(2)
Si(2)	44(1)	60(1)	58(1)	2(1)	2(1)	2(1)
O(1)	88(6)	128(7)	162(9)	82(7)	46(6)	22(5)
O(2)	122(7)	102(6)	81(5)	-10(4)	-46(5)	9(5)
O(3)	46(3)	73(4)	57(3)	4(3)	0(2)	12(3)
O(4)	61(4)	75(4)	49(3)	1(3)	6(3)	-4(3)
Ν	63(5)	75(5)	69(5)	-1(4)	2(4)	7(4)
C(1)	57(6)	91(7)	109(8)	46(6)	31(5)	27(5)
C(2)	81(7)	87(7)	54(5)	-8(5)	-12(5)	19(5)
C(3)	102(10)	131(10)	68(7)	19(7)	-18(6)	30(7)
C(4)	191(18)	240(20)	60(7)	60(10)	43(9)	107(15)
C(5)	107(11)	169(15)	124(12)	79(11)	14(9)	50(10)
C(6)	45(5)	62(5)	52(4)	3(4)	8(3)	9(3)
C(7)	37(4)	47(4)	61(5)	1(3)	4(3)	4(3)
C(8)	46(5)	62(5)	67(5)	2(4)	4(4)	-5(4)
C(9)	60(6)	67(5)	59(5)	10(4)	-7(4)	6(4)
C(10)	70(6)	70(6)	60(5)	19(4)	10(4)	-5(4)
C(11)	55(5)	58(5)	61(5)	10(4)	8(4)	-1(4)
C(12)	61(6)	61(5)	65(5)	7(4)	-9(4)	-2(4)
C(13)	95(8)	91(8)	76(7)	12(6)	-29(6)	-13(6)
C(14)	92(8)	62(5)	76(6)	16(5)	21(5)	-10(5)
C(15)	51(5)	63(5)	56(5)	-2(4)	-9(4)	3(4)
C(16)	51(5)	76(6)	53(5)	12(4)	1(3)	11(4)
C(17)	85(7)	70(6)	55(5)	19(4)	22(4)	26(5)
C(18)	117(9)	54(5)	49(5)	4(4)	-5(5)	13(5)
C(19)	83(7)	58(5)	76(6)	2(5)	-18(5)	0(5)
C(20)	56(6)	65(5)	83(6)	6(5)	-13(4)	9(4)
C(21)	51(6)	86(7)	85(7)	21(5)	18(5)	16(4)
C(22)	206(17)	62(7)	94(9)	-6(6)	7(10)	23(8)
C(23)	59(7)	80(7)	154(12)	-9(7)	-18(7)	-4(5)
C(24)	96(8)	122(9)	53(6)	21(6)	22(5)	-12(7)
C(25)	95(10)	151(13)	77(8)	18(8)	22(7)	20(8)
C(26)	116(12)	139(12)	65(7)	4(7)	1(7)	47(9)
C(27)	85(8)	115(9)	59(6)	-18(6)	-11(5)	20(6)
C(28)	66(6)	93(7)	65(6)	2(5)	-4(5)	14(5)
C(29)	81(8)	93(7)	62(6)	14(5)	15(5)	31(6)
C(30)	55(6)	123(9)	69(6)	-37(6)	0(5)	17(6)
C(31)	60(6)	75(6)	92(7)	-4(5)	22(5)	3(5)

C(32)	49(5)	84(7)	70(6)	-5(5)	8(4)	16(4)
C(33)	64(7)	78(7)	76(6)	-8(5)	20(5)	3(5)
C(34)	173(17)	182(16)	85(9)	49(10)	46(10)	101(13)
C(35)	76(10)	260(20)	93(10)	-55(11)	-29(7)	31(11)
C(36)	130(12)	76(8)	157(14)	-1(8)	49(10)	-3(8)
C(37)	88(10)	152(13)	106(10)	-5(9)	-5(7)	53(8)
C(38)	80(9)	129(11)	123(11)	-4(8)	42(8)	-32(8)
C(51)	81(11)	147(14)	106(10)	35(10)	12(9)	47(9)
C(52)	92(13)	148(15)	80(11)	60(10)	26(10)	58(10)
C(53)	88(14)	135(15)	118(13)	60(11)	13(10)	45(10)
C(54)	87(14)	152(17)	115(12)	20(12)	14(11)	41(11)
C(55)	86(14)	157(18)	107(12)	39(11)	39(12)	61(11)
C(56)	73(13)	150(16)	123(12)	50(11)	34(10)	32(11)
C(57)	61(18)	200(30)	110(20)	23(17)	33(15)	12(17)
C(61)	88(13)	150(15)	117(11)	31(11)	25(11)	47(11)
C(62)	85(14)	154(16)	111(11)	43(12)	31(12)	38(11)
C(63)	86(15)	146(16)	120(14)	39(11)	30(13)	36(11)
C(64)	94(19)	162(17)	107(13)	29(13)	38(13)	51(12)
C(65)	109(17)	157(16)	117(12)	69(12)	23(13)	46(12)
C(66)	83(13)	139(14)	129(13)	56(10)	10(11)	37(11)
C(67)	180(40)	160(40)	300(40)	-100(30)	50(40)	10(30)

Figure S-2. ORTEP drawing of 2b (thermal ellipsoids at the 50% probability level).

 Table S-9. Crystal data and structure refinement for complex 3.

Complex	Cp*(OC) ₂ Mo(SiMe ₃)(I	DMAP) (3)
Empirical formula	$C_{22}H_{34}MoN_2O_2Si$	
Formula weight	482.54	
Temperature (K)	150(2)	
Wavelength (Å)	0.71073	
Crystal system	Triclinic	
Space group	<i>P</i> -1	
Unit cell dimensions	a = 8.8649(10) Å	$\alpha = 100.209(2)^{\circ}$
	<i>b</i> = 9.3915(10) Å	$\beta = 96.929(2)^{\circ}$
	c = 15.3505(15) Å	$\gamma = 110.704(3)^{\circ}$
Volume (Å ³)	1153.0(2)	
Ζ	2	
$D_{\text{calc}} (\text{Mg} / \text{m}^3)$	1.390	
Absorption coefficient (mm ⁻¹)	0.640	
<i>F</i> (000)	504	
Crystal Size (mm ³)	$0.25\times0.20\times0.15$	
θ Range for data collection (°)	1.38 - 27.50	
Index ranges	$-11 \le h \le 11, -12 \le k \le$	$12, -19 \le l \le 19$
Reflections collected	10633	
Independent reflections [R(int)]	4888 [0.0254]	
Absorption correction	Semi-empirical from ec	quivalents
Maximum and minimum transmission	1.000 and 0.8470	
Refinement method	Full-matrix least-square	es on F^2
Data / restraints / parameters	4888 / 192 / 359	
Goodness-of-fit on F^2	1.152	
Final <i>R</i> indices ^a $[I > 2\sigma(I)]$	R1 = 0.0284, wR2 = 0.0)743
<i>R</i> indices ^a (all data)	R1 = 0.0287, wR2 = 0.0)745
Largest difference in peak and hole (eÅ-3)	0.527 and -0.680	

 ${}^{\mathbf{a}}R1 = \Sigma ||Fo| - |Fc|| / \Sigma |Fo|.$

 $wR2 = \left[\sum [w (Fo^2 - Fc^2)^2] / \sum [w (Fo^2)^2] \right]^{0.5},$ calc $w = 1 / [\sigma^2(Fo^2) + (0.0302 P)^2 + 0.7403 P]$ where $P = (Fo^2 + 2Fc^2) / 3.$

	x	У	Ζ	U(eq)
Мо	56(1)	3416(1)	2311(1)	17(1)
Si	-2548(1)	907(1)	2212(1)	23(1)
O(1)	1000(3)	509(3)	2136(2)	55(1)
O(2)	-1574(2)	3713(2)	3982(1)	39(1)
N(1)	2402(2)	4707(2)	3331(1)	20(1)
N(2)	6962(2)	7622(2)	5023(1)	30(1)
C(1)	635(3)	1582(3)	2250(2)	28(1)
C(2)	-956(3)	3555(3)	3361(2)	24(1)
C(3)	-2373(4)	-87(3)	3174(2)	44(1)
C(4)	-3066(3)	-735(3)	1178(2)	39(1)
C(5)	-4527(3)	1246(3)	2253(2)	40(1)
C(6)	3804(3)	4467(2)	3253(2)	23(1)
C(7)	5319(3)	5374(3)	3793(1)	25(1)
C(8)	5500(3)	6669(2)	4484(1)	23(1)
C(9)	4029(3)	6891(3)	4586(1)	27(1)
C(10)	2570(3)	5910(3)	4018(2)	25(1)
C(11)	8474(3)	7408(3)	4890(2)	35(1)
C(12)	7112(3)	9028(3)	5663(2)	43(1)
C(13)	-1431(6)	3786(9)	1035(5)	45(2)
C(14)	-609(8)	5282(6)	1640(4)	40(1)
C(15)	1101(6)	5668(5)	1694(4)	33(1)
C(16)	1339(6)	4407(7)	1145(3)	36(1)
C(17)	-224(8)	3241(6)	727(3)	47(2)
C(18)	-3234(6)	3042(9)	600(5)	92(3)
C(19)	-1403(8)	6318(7)	2063(5)	80(2)
C(20)	2439(6)	7213(5)	2185(3)	55(1)
C(21)	2962(6)	4380(7)	947(3)	61(1)
C(22)	-498(8)	1820(7)	-18(3)	91(2)
C(33)	-1328(11)	4657(13)	1543(6)	27(2)
C(34)	251(13)	5767(7)	1965(4)	17(1)
C(35)	1411(10)	5258(11)	1580(7)	19(2)
C(36)	542(16)	3844(11)	934(5)	19(2)
C(37)	-1139(16)	3437(12)	914(8)	22(2)
C(38)	-2892(12)	4917(15)	1650(8)	57(3)

Table S-10. Atomic coordinates (× 10⁴) and equivalent isotropic displacement parameters (Å² × 10³) for **3**. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

C(39)	685(16)	7349(9)	2605(5)	50(3)
C(40)	3251(9)	6201(12)	1766(7)	47(2)
C(41)	1303(15)	2967(11)	321(6)	49(3)
C(42)	-2427(17)	2164(12)	166(7)	67(4)

		o .		
Table S-11. E	Bond lengths	[A] and	angles [°] for 3 .

Mo-Si	2.6169(6)	C(6)-C(7)	1.375(3)
Mo-N(1)	2.2377(17)	C(7)-C(8)	1.412(3)
Mo-C(1)	1.953(2)	C(8)-C(9)	1.413(3)
Mo-C(2)	1.944(2)	C(9)-C(10)	1.373(3)
Mo-C(13)	2.374(6)	C(13)-C(14)	1.420(7)
Mo-C(14)	2.389(4)	C(13)-C(17)	1.433(8)
Mo-C(15)	2.401(5)	C(13)-C(18)	1.508(5)
Mo-C(16)	2.387(4)	C(14)-C(15)	1.417(7)
Mo-C(17)	2.384(4)	C(14)-C(19)	1.494(5)
Mo-C(33)	2.324(8)	C(15)-C(16)	1.423(6)
Mo-C(34)	2.315(6)	C(15)-C(20)	1.503(5)
Mo-C(35)	2.289(10)	C(16)-C(17)	1.412(6)
Mo-C(36)	2.283(6)	C(16)-C(21)	1.514(5)
Mo-C(37)	2.280(12)	C(17)-C(22)	1.520(6)
Si-C(3)	1.899(3)	C(33)-C(34)	1.406(10)
Si-C(4)	1.888(3)	C(33)-C(37)	1.434(13)
Si-C(5)	1.897(3)	C(33)-C(38)	1.513(7)
O(1)-C(1)	1.155(3)	C(34)-C(35)	1.425(10)
O(2)-C(2)	1.167(3)	C(34)-C(39)	1.520(7)
N(1)-C(6)	1.356(3)	C(35)-C(36)	1.403(10)
N(1)-C(10)	1.354(3)	C(35)-C(40)	1.518(8)
N(2)-C(8)	1.351(3)	C(36)-C(37)	1.396(17)
N(2)-C(11)	1.456(3)	C(36)-C(41)	1.513(10)
N(2)-C(12)	1.453(3)	C(37)-C(42)	1.512(8)
Si-Mo-N(1)	133.26(5)	Si-Mo-C(34)	129.9(2)
Si-Mo-C(1)	69.30(8)	Si-Mo-C(35)	146.3(3)
Si-Mo-C(2)	66.99(7)	Si-Mo-C(36)	113.6(3)
Si-Mo-C(13)	87.0(2)	Si-Mo-C(37)	86.7(3)
Si-Mo-C(14)	112.1(2)	N(1)-Mo-C(1)	86.03(8)
Si-Mo-C(15)	143.8(1)	N(1)-Mo-C(2)	83.56(8)
Si-Mo-C(16)	130.3(1)	N(1)-Mo-C(13)	139.1(2)
Si-Mo-C(17)	96.6(1)	N(1)-Mo-C(14)	107.9(2)
Si-Mo-C(33)	95.8(3)	N(1)-Mo-C(15)	82.1(1)
N(1)-Mo-C(16)	91.3(1)	C(14)-Mo-C(15)	34.4(2)
N(1)-Mo-C(17)	125.2(2)	C(14)-Mo-C(16)	57.9(2)

N(1)-Mo-C(33)	123.3(3)	C(14)-Mo-C(17)	58.1(2)
N(1)-Mo-C(34)	88.8(2)	C(14)-Mo-C(33)	16.4(3)
N(1)-Mo-C(35)	80.2(2)	C(14)-Mo-C(34)	19.2(3)
N(1)-Mo-C(36)	108.4(3)	C(14)-Mo-C(35)	45.5(3)
N(1)-Mo-C(37)	139.9(3)	C(14)-Mo-C(36)	55.6(3)
C(1)-Mo-C(2)	105.64(9)	C(15)-Mo-C(16)	34.6(2)
C(1)-Mo-C(13)	121.8(2)	C(15)-Mo-C(17)	57.3(2)
C(1)-Mo-C(14)	152.25(14)	C(15)-Mo-C(33)	49.7(3)
C(1)-Mo-C(15)	131.1(2)	C(15)-Mo-C(34)	22.6(2)
C(1)-Mo-C(16)	99.1(2)	C(15)-Mo-C(35)	13.5(3)
C(1)-Mo-C(17)	94.2(2)	C(15)-Mo-C(36)	44.0(3)
C(1)-Mo-C(33)	146.0(3)	C(15)-Mo-C(37)	59.2(3)
C(1)-Mo-C(34)	153.6(2)	C(16)-Mo-C(17)	34.4(2)
C(1)-Mo-C(35)	117.6(3)	C(16)-Mo-C(33)	66.7(3)
C(1)-Mo-C(36)	97.6(2)	C(16)-Mo-C(34)	55.2(2)
C(1)-Mo-C(37)	110.5(3)	C(16)-Mo-C(35)	22.7(3)
C(2)-Mo-C(13)	112.5(2)	C(16)-Mo-C(36)	17.3(3)
C(2)-Mo-C(14)	99.81(13)	C(16)-Mo-C(37)	51.1(3)
C(2)-Mo-C(15)	119.8(1)	C(17)-Mo-C(33)	56.2(3)
C(2)-Mo-C(16)	154.3(2)	C(17)-Mo-C(34)	68.1(2)
C(2)-Mo-C(17)	146.6(2)	C(17)-Mo-C(35)	51.5(3)
C(2)-Mo-C(33)	95.2(2)	C(17)-Mo-C(36)	17.2(3)
C(2)-Mo-C(34)	99.4(2)	C(17)-Mo-C(37)	23.6(3)
C(2)-Mo-C(35)	132.2(3)	C(33)-Mo-C(34)	35.3(3)
C(2)-Mo-C(36)	154.7(2)	C(33)-Mo-C(35)	59.3(3)
C(2)-Mo-C(37)	123.2(4)	C(33)-Mo-C(36)	59.5(3)
C(13)-Mo-C(14)	34.7(2)	C(33)-Mo-C(37)	36.3(3)
C(13)-Mo-C(15)	57.0(2)	C(34)-Mo-C(35)	36.1(3)
C(13)-Mo-C(16)	57.6(2)	C(34)-Mo-C(36)	59.8(2)
C(13)-Mo-C(17)	35.1(2)	C(34)-Mo-C(37)	60.0(3)
C(13)-Mo-C(33)	24.4(3)	C(35)-Mo-C(36)	35.7(3)
C(13)-Mo-C(34)	52.5(3)	C(35)-Mo-C(37)	59.7(4)
C(13)-Mo-C(35)	60.8(3)	C(36)-Mo-C(37)	35.6(4)
C(13)-Mo-C(36)	44.3(3)	Mo-Si-C(3)	113.62(8)
Mo-Si-C(4)	115.63(9)	C(14)-C(15)-C(20)	125.5(5)
Mo-Si-C(5)	115.13(9)	C(16)-C(15)-C(20)	125.4(5)
C(3)-Si-C(4)	102.71(13)	Mo-C(16)-C(15)	73.3(3)
C(3)-Si-C(5)	103.43(13)	Mo-C(16)-C(17)	72.7(2)

C(4)-Si-C(5)	104.79(12)	Mo-C(16)-C(21)	125.3(3)
Mo-N(1)-C(6)	122.75(13)	C(15)-C(16)-C(17)	108.1(4)
Mo-N(1)-C(10)	121.96(13)	C(15)-C(16)-C(21)	126.5(5)
C(6)-N(1)-C(10)	114.9(2)	C(17)-C(16)-C(21)	125.1(6)
C(8)-N(2)-C(11)	121.1(2)	Mo-C(17)-C(13)	72.1(3)
C(8)-N(2)-C(12)	120.7(2)	Mo-C(17)-C(16)	72.9(2)
C(11)-N(2)-C(12)	117.5(2)	Mo-C(17)-C(22)	127.6(4)
Mo-C(1)-O(1)	173.8(2)	C(13)-C(17)-C(16)	107.3(5)
Mo-C(2)-O(2)	176.3(2)	C(13)-C(17)-C(22)	128.1(6)
N(1)-C(6)-C(7)	124.6(2)	C(16)-C(17)-C(22)	123.9(6)
C(6)-C(7)-C(8)	120.3(2)	Mo-C(33)-C(34)	72.4(4)
N(2)-C(8)-C(7)	122.9(2)	Mo-C(33)-C(37)	70.2(6)
N(2)-C(8)-C(9)	121.8(2)	Mo-C(33)-C(38)	131.2(6)
C(7)-C(8)-C(9)	115.2(2)	C(34)-C(33)-C(37)	107.9(7)
C(8)-C(9)-C(10)	120.1(2)	C(34)-C(33)-C(38)	123.3(10)
N(1)-C(10)-C(9)	124.8(2)	C(37)-C(33)-C(38)	128.1(11)
Mo-C(13)-C(14)	73.2(3)	Mo-C(34)-C(33)	72.7(4)
Mo-C(13)-C(17)	72.9(3)	Mo-C(34)-C(35)	71.0(5)
Mo-C(13)-C(18)	131.2(4)	Mo-C(34)-C(39)	128.5(5)
C(14)-C(13)-C(17)	108.7(4)	C(33)-C(34)-C(35)	107.4(5)
C(14)-C(13)-C(18)	126.5(7)	C(33)-C(34)-C(39)	127.5(10)
C(17)-C(13)-C(18)	123.2(7)	C(35)-C(34)-C(39)	124.5(9)
Mo-C(14)-C(13)	72.1(3)	Mo-C(35)-C(34)	73.0(4)
Mo-C(14)-C(15)	73.3(2)	Mo-C(35)-C(36)	71.9(5)
Mo-C(14)-C(19)	124.6(3)	Mo-C(35)-C(40)	126.5(6)
C(13)-C(14)-C(15)	107.0(4)	C(34)-C(35)-C(36)	108.3(6)
C(13)-C(14)-C(19)	126.3(6)	C(34)-C(35)-C(40)	124.9(9)
C(15)-C(14)-C(19)	126.5(6)	C(36)-C(35)-C(40)	126.4(11)
Mo-C(15)-C(14)	72.3(2)	Mo-C(36)-C(35)	72.3(5)
Mo-C(15)-C(16)	72.2(3)	Mo-C(36)-C(37)	72.1(6)
Mo-C(15)-C(20)	125.6(3)	Mo-C(36)-C(41)	124.5(5)
C(14)-C(15)-C(16)	108.9(4)	C(35)-C(36)-C(37)	108.6(6)
C(35)-C(36)-C(41)	125.3(12)	Mo-C(37)-C(42)	132.2(8)
C(37)-C(36)-C(41)	125.9(11)	C(33)-C(37)-C(36)	107.7(8)
Mo-C(37)-C(33)	73.5(6)	C(33)-C(37)-C(42)	128.3(13)
Mo-C(37)-C(36)	72.3(5)	C(36)-C(37)-C(42)	121.9(12)

	<i>U</i> ₁₁	U ₂₂	U ₃₃	U ₂₃	<i>U</i> ₁₃	<i>U</i> ₁₂
Мо	15(1)	14(1)	20(1)	4(1)	0(1)	3(1)
Si	17(1)	17(1)	30(1)	7(1)	0(1)	3(1)
O(1)	38(1)	28(1)	89(2)	-10(1)	-15(1)	21(1)
O(2)	37(1)	48(1)	31(1)	3(1)	14(1)	15(1)
N(1)	16(1)	17(1)	23(1)	3(1)	0(1)	5(1)
N(2)	21(1)	32(1)	25(1)	1(1)	-4(1)	3(1)
C(1)	17(1)	23(1)	38(1)	-1(1)	-4(1)	6(1)
C(2)	19(1)	19(1)	29(1)	4(1)	-1(1)	6(1)
C(3)	38(2)	30(1)	52(2)	24(1)	-7(1)	-4(1)
C(4)	28(1)	23(1)	51(2)	-4(1)	-9(1)	2(1)
C(5)	20(1)	47(2)	53(2)	14(1)	9(1)	10(1)
C(6)	19(1)	19(1)	28(1)	1(1)	-1(1)	6(1)
C(7)	19(1)	24(1)	30(1)	5(1)	0(1)	8(1)
C(8)	18(1)	23(1)	20(1)	5(1)	-1(1)	2(1)
C(9)	25(1)	25(1)	24(1)	-4(1)	2(1)	6(1)
C(10)	21(1)	25(1)	26(1)	1(1)	2(1)	9(1)
C(11)	21(1)	35(1)	39(1)	5(1)	-6(1)	5(1)
C(12)	31(2)	43(2)	33(1)	-11(1)	-4(1)	1(1)
C(13)	21(2)	41(4)	44(3)	40(3)	-8(2)	-2(2)
C(14)	28(3)	46(3)	60(3)	41(2)	7(2)	16(2)
C(15)	26(2)	31(2)	39(3)	26(2)	1(2)	1(2)
C(16)	29(2)	51(3)	26(2)	22(2)	9(2)	3(2)
C(17)	41(3)	60(3)	19(2)	15(2)	1(2)	-6(2)
C(18)	31(3)	123(5)	100(4)	90(4)	-26(2)	-13(3)
C(19)	83(4)	78(4)	133(5)	75(4)	50(4)	62(4)
C(20)	51(3)	32(2)	67(3)	30(2)	-4(2)	-7(2)
C(21)	50(3)	90(4)	50(2)	33(3)	30(2)	21(3)
C(22)	92(5)	109(5)	21(2)	-10(2)	18(2)	-10(3)
C(33)	26(4)	37(4)	29(3)	23(3)	9(3)	17(3)
C(34)	31(4)	14(3)	15(3)	10(2)	10(3)	13(3)
C(35)	18(4)	20(4)	21(3)	13(3)	8(3)	5(3)
C(36)	31(5)	16(3)	14(3)	7(3)	11(3)	9(3)
C(37)	34(5)	12(3)	14(3)	9(2)	-4(3)	1(3)
C(38)	42(5)	92(7)	83(7)	69(6)	33(5)	51(5)

Table S-12. Anisotropic displacement parameters ($Å^2 \times 10^3$) for **3**. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11} + ... + 2hka^*b^*U_{12}]$

C(39)	111(8)	20(3)	31(4)	10(3)	16(4)	35(4)
C(40)	24(4)	56(5)	59(5)	39(4)	11(3)	1(4)
C(41)	97(7)	40(5)	39(4)	21(4)	39(5)	47(5)
C(42)	72(8)	45(5)	42(5)	26(4)	-33(5)	-21(5)

Figure S-3. ORTEP drawing of 3 (thermal ellipsoids at the 50% probability level).

4. References

- 1. M. Hirotsu, T. Nunokawa, K. Ueno, Organometallics 2006, 25, 1554-1556.
- 2. G. M. Sheldrick, SHELX-97, Program for Crystal Structure Determination, University of Göttingen,

Göttingen, Germany, 1997.