Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Information

Enantiopure N,N,O-Scorpionate Zinc Amide and Chloride Complexes as Efficient Initiators for the Heteroselective ROP of Cyclic Esters.

Manuel Honrado,^a Antonio Otero,^{*,a} Juan Fernández-Baeza,^{*,a} Luis F. Sánchez-Barba,^{*,b} Andrés Garcés,^b Agustín Lara-Sánchez^a and Ana M. Rodríguez^a

^aDepartamento de Química Inorgánica, Orgánica y Bioquímica- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Castilla-La Mancha, Campus Universitario, 13071-Ciudad Real, Spain.

^bDepartamento de Ciencias, Universidad Rey Juan Carlos, Móstoles-28933-Madrid, Spain.

Table of Contents

1)	Ring-opening polymerization of <i>ɛ</i> -caprolactone and lactide details:
	Table S1. Polymerization of <i>ɛ</i> -caprolactone catalyzed by complexes 1–5
	Figure S1. GPC trace corresponding to a poly(L-lactide) sample
	Figure S2. Selected area of MALDI–ToF mass spectrum of PLA synthesized by ROP using
	2
	Figure S3. Pseudo-first-order kinetic plots for L-LA polymerizations employing 3 and 4S6
	Figure S4. Plots of $\ln k_{app}$ versus $\ln [catalyst]_0$ for the polymerization of L-LA employing 3
	and 4
	Table S2. Rate constants dependence on the initial catalyst concentration for 3 and 4
	Figure S5. ¹ H NMR spectrum of the homodecoupled CH resonance of poly(rac-
	lactide)
2)	X-ray diffraction experimental details:
	Figure S6. ORTEP view of the <i>S</i> enantiomer for $[Zn{N(SiMe_3)_2}(bpzbe)](1)$ S10
	Table S3. Crystal data and structure refinement for 1, 3 and 8
3)	References

entry	initiator	temp. (°C)	yield (g)	conv (%) ^b	$M_{ m n(theor)}(m Da)^c$	$M_{\rm n}$ (Da) ^d	$M_{ m w}/M_{ m n}{}^d$
1	1	20	0.22	11	2 500	3 800	1.28
2	1^e	20	traces	-			
3	1	50	1.11	54	12 300	11 700	1.26
4	1 ^e	50	0.45	22	5 000	4 500	1.24
5	2	20	traces	-			
6	2	50	0.53	26	5 900	5 500	1.23
7	3	20	0.60	29	6 600	6 900	1.17
8	3	50	1.15	56	12 800	11 900	1.15
9	4	20	0.24	12	2 700	3 700	1.07
10	4	50	0.98	48	10 900	11 600	1.12
11	5	20	1.21	59	13 500	13 200	1.11
12	5	50	1.25	61	13 900	14 900	1.12

Table S1. Polymerization of ε -caprolactone catalyzed by 1–5^{*a*}

^{*a*} Polymerization conditions: 90 μ mol of Zn, 10 mL of toluene as solvent, 3 h of reaction time, [*E*-CL]₀/[Zn]₀ = 200. ^{*b*} Percentage conversion of the monomer [(weight of polymer recovered/weight of monomer) × 100]. ^{*c*} Theoretical $M_n = [(\text{monomer/catalyst}) \times (\% \text{ conversion}) \times (M_w \text{ of CL})]/100. ^{$ *d* $} Determined by size exclusion chromatography relative to polystyrene standards in tetrahydrofuran. Experimental <math>M_n$ was calculated considering Mark–Houwink's corrections¹ for M_n [$M_n(\text{obsd}) = 0.56 \times M_n(\text{GPC})$]. ^{*e*} 10 mL of tetrahydrofuran as solvent.

Figure S1. GPC trace corresponding to a poly(L-lactide) prepared from catalyst **5** (Table 2, entry 10).

Figure S2. Selected area of MALDI–ToF mass spectrum of PLA sample obtained with $[L-LA]_0/[2]_0$ = 15, 83% conversion; theoretical molecular weights calculated according to the equation: $M_n = (DP_n \times M_{wLA}) + M_{wHN(SiHMe2)2} + M_{wNa}$, where DP_n is the degree of polymerization, $M_{wLA} = 144.13$, $M_{wHN(SiHMe2)2} = 133.34$ and $M_{wNa} = 23.09$ g·mol⁻¹.

The distribution in the spectrum (Figure S2) indicates the existence of a single family of polymer chains capped by $-CH(CH_3)OH$ and $N(SiHMe_2)_2-$ *termini*, corresponding to oligomers of formula $H(OCHMeCO)_{2n} N(SiHMe_2)_2) \cdot Na^+$ (n = 4 to 12) with consecutive peaks separated by increments of 144 Da. Moreover, neither intermolecular ester-exchange (transesterification) reactions nor cyclic oligomers were detected.

Figure S3. Pseudo-first-order kinetic plots for the polymerization of L-LA in toluene at 50°C employing $[Zn{N(SiMe_3)_2}(bpzte)]_2$ (**3**) and $[Zn{N(SiHMe_2)_2}(bpzte)]_2$] (**4**) as catalysts ([L-LA]₀ = 0.72 M).

In all cases, the linearity of the semi-logarithmic plots of ln ($[L-LA]_0/[L-LA]_t$) versus reaction time for catalysts **3** and **4** at 50°C, employing different initial catalyst concentrations, shows that the propagations were first order with respect to L-LA monomer (Figure S3) (square correlation coefficients ≥ 0.97).

Figure S4. Plots of $\ln k_{app}$ versus $\ln [catalyst]_0$ for the polymerization of L-LA employing initiators $[Zn\{N(SiMe_3)_2\}(bpzte)]_2$ (**3**) and $[Zn\{N(SiHMe_2)_2\}(bpzte)]_2$] (**4**) in toluene at 50°C, with $[LA]_0 = 0.72 \text{ mol/L}$.

The kinetic dependence on the catalyst concentration (n) and the propagation rate constant (k_p) confirms that the reaction is also first order in catalysts **3** and **4** at 50°C (Figure S4). These values prove that the polymerization of L-LA mediated by these initiators obeys an overall second-order rate kinetic law of the form:

$$- d[LA]/dt = k_p[catalyst]^1[LA]^1$$

Catalyst	$[catalyst]_0 \times 10^3 (M)$	$k_{\rm app} imes 10^4 ({ m s}^{-1})$	$k_{\rm p} imes 10^2 ({ m M}^{-1} \cdot { m s}^{-1})$	п
3	8	6.0 ± 0.1	5.3 ± 0.4	1.03 ± 0.02
	12	7.2 ± 0.1		
	16	11.3 ± 0.4		
	20	13.8 ± 0.2		
4	8	4.2 ± 0.1	4.6 ± 0.9	1.05 ± 0.04
	12	5.1 ± 0.4		
	16	7.3 ± 0.3		
	20	10.8 ± 0.3		

 Table S2. Rate constants dependence on the initial catalyst concentration for L-LA polymerization at 50°C for 3 and 4.

Figure S5. ¹H NMR spectrum (500 MHz, 298 K, CDCl₃) of the homodecoupled C*H* resonance of poly(*rac*-lactide) prepared employing $[Zn{N(SiMe_3)_2}{(R,R)-bpzmm}]$ (5) as initiator (Table 2, entry 12). The tacticity of the polymer was assigned using the methine signals with homonuclear decoupling as described by Hillmyer and co-workers.²

Figure S6. ORTEP view of the *S* enantiomer of $[Zn{N(SiMe_3)_2}(bpzbe)]$ (1). Hydrogen atoms have been omitted for clarity. Thermal ellipsoids are drawn at the 30% probability level.

	1	3	8·2.5C ₇ H ₈
Molecular formula	C ₂₂ H ₄₃ N ₅ OSi ₂ Zn	C ₂₅ H ₄₁ N ₅ OSi ₂ Zn	$C_{53.5}H_{84}ClN_9O_2Si_2Zn_2$
Formula weight	515.16	549.18	1107.66
Temperature (K)	230(2)	293(2)	230(2)
Wavelength (Å)	0.71073	0.71073	0.71073
Crystal system	Monoclinic	Monoclinic	Triclinic
Space group	P2 ₁ /n	C2/c	Pī
a(Å)	12.364(1)	31.746(9)	11.503(5)
b(Å)	15.670(2)	10.760(4)	13.630(6)
c(Å)	15.710(2)	21.751(8)	21.074(10)
α(°)			86.10(1)
β(°)	112.720(7)	124.508(11)	78.53(1)
γ(°)			70.53(1)
Volume(Å ³)	2807.5(6)	6123(4)	3053(2)
Z	4	8	2
Density (calculated) (g/cm ³)	1.219	1.192	1.205
Absorption coefficient (mm ⁻¹)	0.982	0.905	0.912
F(000)	1104	2336	1178
Crystal size (mm ³)	$0.23 \times 0.19 \times 0.13$	$0.23 \times 0.19 \times 0.15$	$0.31 \times 0.22 \times 0.19$
Index ranges	$-14 \le h \le 14$	$-36 \le h \le 45$	$-13 \leq h \leq 12$
	$-18 \le k \le 18$	$-10 \le k \le 15$	$-16 \le k \le 13$
	$-10 \le 1 \le 18$	$-30 \le l \le 29$	$-25 \le 1 \le 25$
Reflections collected	19507	16774	29343
Independent reflections	4926	9022	9680

Table S3. Crystal data and structure refinement for 1, 3 and $8 \cdot 2.5 C_7 H_8$.

	[R(int) = 0.0903]	[R(int) = 0.0834]	[R(int) = 0.0877]
Data / restraints / parameters	4926 / 0 / 401	9022 / 0 / 318	9680 / 206 / 601
Goodness-of-fit on F ²	1.128	0.861	0.918
Final R indices $[I > 2\sigma(I)]$	R1 = 0.1116	R1 = 0.0634	R1 = 0.0806
	wR2 = 0.2680	wR2 = 0.1345	wR2 = 0.2161
Largest diff. peak / hole, e.Å ⁻³	1.184 and -0.653	0.295 and -0.361	1.100 and -0.925

- (1) (a) J. Baran, A. Duda, A. Kowalski, R. Szymanski and S. Penczek, *Macromol. Rapid Commun.*, 1997, 18, 325; (b) I. Barakat, P. Dubois, R. Jérôme and P. Teyssié, *J. Polym. Sci. Pol. Chem.* 1993, 31, 505.
- (2) M. T. Zell, B. E. Padden, A. J. Paterick, K. A. M. Thakur, R. T. Kean, M. A. Hillmyer, E. J. Munson, *Macromolecules* 2002, **35**, 7700.