Supporting Information File

Anion-controlled formation of an aminal-(bis)imine Fe(II)-complex

Chandan Giri,^{*a,b*} Filip Topić,^{*a*} Prasenjit Mal*^{*b*} and Kari Rissanen*^{*a*}

^aDepartment of Chemistry, Nanoscience Center, University of Jyväskylä, P.O. Box 35, FIN-40351 Finland; Tel: +358-50-5623721; email: <u>kari.t.rissanen@jyu.fi</u>

^bSchool of Chemical Sciences, NISER Bhubaneswar, PO Sainik School, IOP Campus, Bhubaneswar, Odisha, India 751005; Tel: +916742304073; email: <u>pmal@niser.ac.in</u>

EXPERIMENTAL SECTION

¹H NMR and ¹³C NMR were measured on a Bruker AV 500 (500 MHz). All the ¹H NMR was carried at room temperature mainly in deuterated chloroform unless specified otherwise.

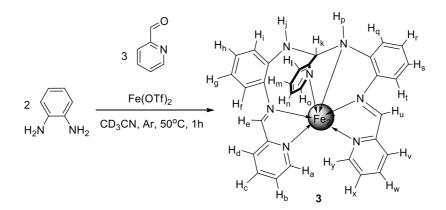
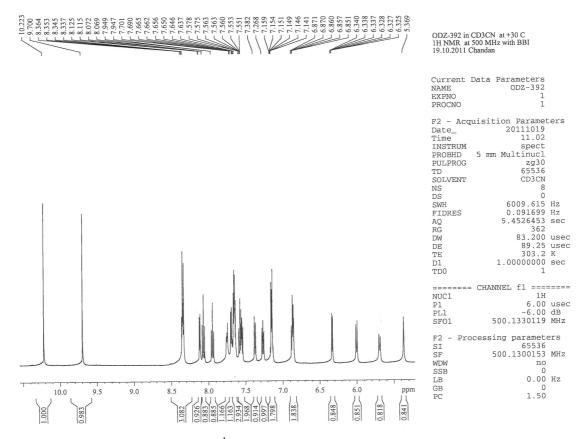



Figure S1. Synthesis of 3 in acetonitrile.

Synthesis of **3**: Into a j-young NMR tube were added 1,2-diaminobenzene (2.0 mg, 18.5 µmol), pyridine-2-carboxaldehyde (2.64 µl, 27.7 µmol), iron(II) triflate (3.27 mg, 9.2 µmol) and CD₃CN (0.5 mL). The tube was sealed, and the solution purged off dioxygen by three vacuum/argon fill cycles. All starting materials dissolved in degassed CD₃CN giving a dark purple solution. The tube was placed in an oil bath at 323 K for 1 h. ¹H NMR: (500 MHz, 303 K, in CD₃CN); $\delta = 10.22$ (s, 1H, H_u), 9.70 (s, 1H, H_e), 8.36 (m, 3H, H_v, H_r, H_d), 8.12 (d, *J* = 5 Hz, H_y), 8.07 (td, *J_I* = 8 Hz, *J₂* = 1.5 Hz H_w), 7.95 (td, *J_I* = 8 Hz, *J₂* = 1.5 Hz H_c), 7.75 (m, 1H, H_q), 7.70 (d, *J* = 5.5 Hz, H_a), 7.66 (m, 3H, H_f, H_s, H_t), 7.56 (m, 2H, H_m, H_x), 7.37 (d, *J* = 8, H₁), 7.27 (td, *J_I* = 6 Hz, *J₂* = 1.5 Hz, H_b), 7.15 (m, 2H, H_g, H_h), 6.87 (m, 2H, H_i, H_n), 6.33 (dt, *J_I* = 6 Hz, *J₂* = 1 Hz, H_o), 6.00 (d, *J* = 8.5, H_k), 5.69

(d, J = 8.5, H_j), 5.37 (s, h_p) ppm; ¹³C NMR(125 MHz, 303K, CD₃CN): $\delta = 173.5$, 163.5, 161.5, 161.4, 159.8, 155.5, 154.9, 152.9, 149.1, 144.0, 143.5, 139.7, 139.5, 138.8, 138.4, 134.1, 131.4, 131.0, 130.9, 130.2, 129.5, 128.8, 128.0, 127.0, 126.2, 126.1, 124.2, 122.0, 84,1 ppm; ESI-MS: m/z: 269.58 [FeL]²⁺, 688.14 [(FeL)(OTf)]⁺. Elemental analysis [C₃₀H₂₅N₇Fe]²⁺(CF₃SO₃)⁻₂ Observed: C = 45.83, H = 3.31, N = 11.84, Calculated: C = 45.89, H = 3.01, N = 11.71.

Figure S2. ¹H NMR of complex **3** in CD_3CN .

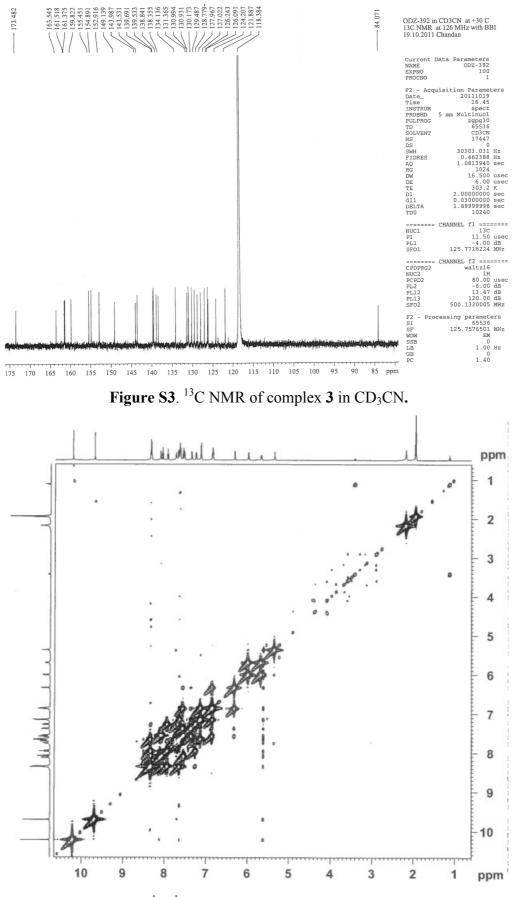


Figure S4. ¹H-¹H COSY NMR of complex 3 in CD₃CN.

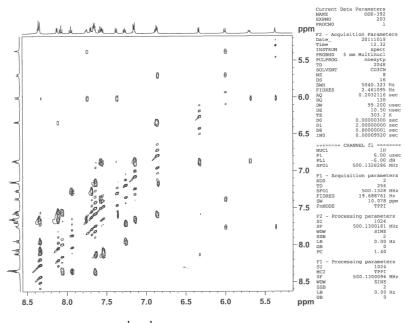


Figure S5. ¹H-¹H NOESY NMR of complex 3.

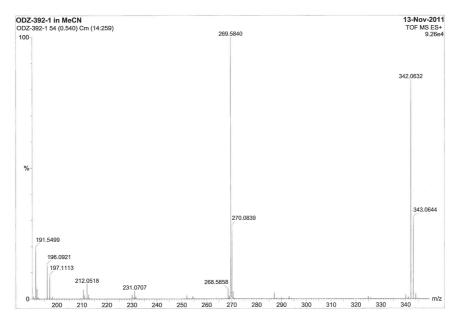


Figure S6. ESI-MS of complex 3.



Figure S7. ESI-MS of complex 3.

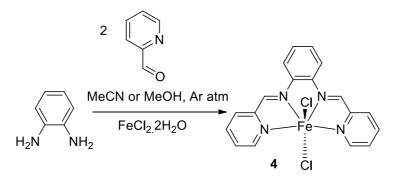
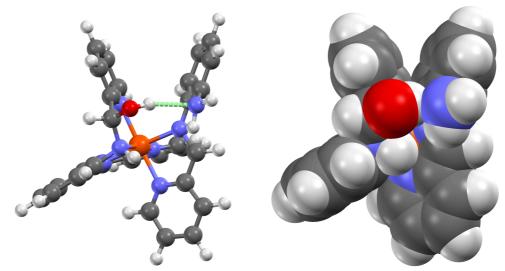



Figure S8. Synthesis of complex 4.

Synthesis of 4. Into a j-young NMR tube were added 1,2-diaminobenzene (1.5 mg, 13.9 μ mol), 2-formyl pyridine (2.64 μ l, 27.7 μ mol and iron(II) chloride dihydrate (2.24 mg, 13.9 μ mol) and CD₃OD (0.5 mL). The tube was sealed, and the solution purged of dioxygen by three vacuum/argon fill cycles. All starting materials dissolved in degassed CD₃OD giving a dark green solution. The tube was placed in an oil bath at 323 K. After 2 h ¹H NMR was checked and only a broad peak was observed. Diffusion of di ethyl-ether to the solution **4** isolated the single crystal.

Molecular modeling

Figure S8. The calculated structure of the hemi-aminal **5**, SPARTAN2014, MM-level (Spartan 2014, Wavefunction Inc., 18401 Von Karman Ave, Irvine, CA 92612, USA.

X-ray crystallography

Experimental data for **3**: Data were collected on a Bruker-Nonius KappaCCD diffractometer with APEX II detector at T = 123.0(1) K using graphite-monochromated Mo-*K* α radiation ($\lambda = 0.71073$ Å). Collect^[1] software was used for data collection, whereas Denzo/Scalepack^[2] were used for processing. Semi-empirical absorption correction was applied using SADABS2008.^[3]

Crystal dimensions $0.30 \times 0.20 \times 0.20$ mm, $C_{32}H_{25}F_6FeN_7O_6S_2$, M = 837.56, triclinic, space group $P1, \bar{,} a = 9.2055(3)$ Å, b = 11.5244(4) Å, c = 16.9127(5) Å, $a = 100.554(2)^\circ$, $\beta = 93.752(2)^\circ$, $\gamma = 100.5206(18)^\circ$, V = 1725.13(10) Å³, Z = 2, $d_c = 1.612$ g cm⁻³, $\mu = 0.647$ mm⁻¹, F(000) = 852, 9519 reflections ($2\theta_{max} = 50.49^\circ$) measured (6216 unique, $R_{int} = 0.0266$, completeness = 99.7%), Final R indices ($I > 2\sigma(I)$): $R_I = 0.0505$, $wR_2 = 0.1026$, R indices (all data): $R_I = 0.0696$, $wR_2 = 0.1146$. *GOF* = 1.062 for 491 parameters and 1 restraint, largest diff. peak and hole 0.789/-0.566 eÅ⁻³. CCDC-1006930 contains the supplementary data for this structure. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

Experimental data for 4: Data were collected on an Agilent SuperNova Dual diffractometer with Atlas detector at T = 123.0(1) K using mirror-monochromated Cu-K α radiation ($\lambda = 1.54184$ Å). CrysAlisPro^[4] software was used for data collection, integration and reduction as well as applying the numerical absorption correction.

^[1] R.W.W. Hooft, *COLLECT*, **1998**, Nonius BV, Delft, The Netherlands.

^[2] Z. Otwinowski, W. Minor, *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.

^[3] G.M. Sheldrick, *SADABS*, Version 2008/2, **1996**, University of Göttingen, Germany.

^[4] CrysAlisPro, 1.171.36.28 ed., Agilent Technologies, Ltd., Yarton, UK, 2009–2013.

Crystal dimensions $0.154 \times 0.066 \times 0.018$ mm, $C_{18}H_{14}Cl_2FeN_4$, M = 413.08, monoclinic, space group C2/c, a = 10.2438(3) Å, b = 19.3127(6) Å, c = 8.8565(2) Å, $a = 90^{\circ}$, $\beta = 101.637(3)^{\circ}$, $\gamma = 90^{\circ}$, V = 1716.11(8) Å³, Z = 4, $d_c = 1.599$ g cm⁻³, $\mu = 9.976$ mm⁻¹, F(000) = 840, 2658 reflections ($2\theta_{max} = 135.48^{\circ}$) measured (1545 unique, $R_{int} = 0.0225$, completeness = 98.6%), Final *R* indices ($I > 2\sigma(I)$): $R_I = 0.0343$, $wR_2 = 0.0897$, *R* indices (all data): $R_I = 0.0362$, $wR_2 = 0.0922$. *GOF* = 1.063 for 114 parameters and 0 restraints, largest diff. peak and hole $0.426/-0.312 e Å^{-3}$. CCDC-1006931 contains the supplementary data for this structure. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

The structures were solved by charge flipping with Superflip^[5] and refined by full-matrix leastsquares methods using WinGX software,^[6] which utilizes the SHELXL-2013 module.^[7] The positions of carbon-bound hydrogen atoms were calculated and refined as riding on the parent carbon atoms with $U_{\rm H} = 1.2 \ U_{\rm C}$. The nitrogen-bound hydrogen atoms in **3** were found in the electron density difference map and refined with $U_{\rm H} = 1.2 \ U_{\rm N}$, constrained in one (coordinating aminal NH) and restrained in the other case (non-coordinating aminal NH).

^[5] L. Palatinus, G. Chapuis, J. Appl. Crystallogr. 2007, 40, 786–790.

^[6] L. J. Farrugia, J. Appl. Crystallogr. 2012, 45, 849–854.

^[7] G. Sheldrick, *Acta Crystallogr. A* **2008**, *64*, 112–122.