Supplementary Material

Cyclopalladation of telluro ether ligands: synthesis, reactivity and structural characterization

Siddhartha Kolay, Mukesh Kumar, Amey Wadawale, Dasarathi Das and Vimal K. Jain

Preparation of dimesitylditelluride (Mes₂Te₂)

To a THF solution of mesityl magnesium bromide (prepared from mesityl bromide (20.82 g, 104 mmol) and magnesium turnings (2.52 g, 104 mmol) in 50 cm³ THF), a freshly grind tellurium powder (13.34 g, 104 mmol) was added under a nitrogen atmosphere with stirring which continued overnight. The contents were exposed to air for two hrs with stirring and the solvent was evaporated under reduced pressure. The residue was extracted with diethylether (3×50 cm³) and filtered. The filtrate was concentrated to 50 cm³ which on slow evaporation afforded red crystals (15.00 g, 58%); m.p. 120°C (literature¹ 125-127°C). ¹²⁵Te {¹H} NMR (CDCl₃) δ = 200.3 ppm.

Similarly diphenylditelluride [Ph₂Te₂, (62%); m.p. 62°C; ¹²⁵Te {¹H} NMR (CDCl₃) δ = 421.5 ppm] and di-*o*-tolylditelluride [Te₂(*o*-tol)₂], (54%); ¹²⁵Te {¹H} NMR (CDCl₃) δ = 282.1 ppm] were prepared.

Preparation of dimesityl telluride (Mes₂Te)

To an ice cold solution (50 cm³) of dimesitylditelluride (2.5 g, 5.06 mmol) bromine (0.261 ml) in 5 cm³ toluene was added dropwise. To this MesTeBr solution, a THF solution of MesMgBr (0.5M, 25ml) was added dropwise with stirring whereupon a colorless solution was formed. After one hour of stirring at room temperature, water (50 cm³) was introduced to the reaction flask. The organic layer was evaporated under reduced pressure and the aqueous phase was extracted with diethyl ether (20 cm³ × 4) and the combined ether extracts were washed with aqueous NH₄Cl followed by saturated aqueous NaCl. The organic phase was dried over anhydrous MgSO₄ for 2 hr. The contents were filtered and concentrated under vacuum to give colourless crystals of the title compound (3.12g, 84% yield), m.p 110°C (literature¹ 123-125 °C). Anal.Calcd for C₁₈H₂₂Te: C, 59.07; H, 6.06%. Found, C, 58.21; H, 5.89%.¹H NMR (CDCl₃) δ : 2.28 (s, Me-4); 2.39 (s, 2,6-Me); 6.91(s, 3,5-CH).¹³C{¹H} NMR (CDCl₃) δ : 20.8 (s, 4-Me); 28.2 (s, 2,6-Me); 119.1 (Te-C), 127.8 (3,5-CH); 137.9,144.2 ppm. ¹²⁵Te {¹H} NMR (CDCl₃) δ = 260.8 ppm (NMR data were consistent with literature²).

Diphenyl telluride (Ph₂Te)

Prepared similar to dimesityl telluride employing PhTeBr and PhMgBr. The product was purified by converting into Ph_2TeBr_2 , by oxidation of crude Ph_2Te with bromine, which was recrystallized from toluene as yellow crystals. The latter was reduced with $Na_2S.15H_2O$ in refluxing methanol for 15 min. The contents were diluted with water and methanol was evaporated under reduced pressure. The aqueous phase was extracted with diethyl ether (4 × 20 cm³) and after processing gave cream colored oily liquid in 66% yield. Anal.Calcd.for

 $C_{12}H_{10}Te: C, 51.14; H, 3.58\%$. Found,C, 50.55; H, 3.46%. ¹H NMR (CDCl₃) $\delta: 7.23-7.36(m), 7.74-7.77$ (m)(Ph).¹³C{¹H} NMR (CDCl₃) $\delta: 114.8$ (C-Te), 127.9, 129.6, 138.0 ppm. ¹²⁵Te {¹H} NMR (CDCl₃) $\delta = 693.4$ ppm.

Di-*o***-tolyltellurie** (*o***-tol**₂**Te**)

Prepared and purified similar to diphenyl telluride and isolated as a cream colored liquid in 60% yield. Anal.Calcd.for C₁₄H₁₄Te: C, 54.27; H, 4.55%. Found,C, 53.56; H, 4.53%. ¹H NMR (CDCl₃) δ : 2.72(s, Me); 7.22 (t, 6.8 Hz), 7.48 (br, m), 7.82 (d, 7.5 Hz). ¹³C{¹H} NMR (CDCl₃) δ : 26.7 (Me), 119.0 (C-Te), 127.3, 128.8, 129.8, 138.5, 142.8 (C-2) ppm. ¹²⁵Te {¹H} NMR (CDCl₃) δ = 499.3 ppm.

Mesityl(phenyl)telluride (MesTePh)

This was prepared by treatment of MesTeBr (from Mes₂Te₂ (5.0g, 10.0 mmol) and bromine (1.62g, 10.3 mmol) in THF) with PhMgBr (0.6 M, 40 cm³) and processed in a way similar to Ph₂Te, and was isolated as a cream colored liquid (49% yield). ¹H NMR (CDCl₃) δ : 2.36 (s, 4-Me); 2.60 (s, 2,6-Me); 7.06(s, 3,5-CH);7.14-7.19(m); 7.36-7.39(m) (Ph).¹²⁵Te{¹H} NMR (CDCl₃) δ = 427.2 ppm.

Mesityl(o-tolyl)telluride (MesTe(o-tol))

This was prepared from *o*-tolTeBr (from *o*-tol₂Te₂ (5.0 g, 11.31mmol) and bromine (1.826 g, 11.57 mmol) in THF) and MesMgBr (0.5 M, 50 cm³) and processed in a way similar to dimesityl telluride, and isolated as a cream crystalline solid (5.2 g, 68% yield); m.p. 50°C. Anal.Calcd.for C₁₆H₁₈Te: C, 56.87; H, 5.37%. Found,C, 56.00; H, 5.56%. ¹H NMR (CDCl₃) δ : 2.47, 2.52, 2.70 (each s for Me); 6.97-7.29 (m, 3,5-CH of Mes, o-tol). ¹³C{¹H} NMR (CDCl₃) δ : 21.0 (s), 24.8(s), 29.3(s),(Me); 117.8, 120.1, 126.4, 126.6, 127.6, 129.3, 132.9, 139.3, 140.2, 145.6 ppm. ¹²⁵Te {¹H} NMR (CDCl₃) δ = 336.8 ppm.

trans-[PdCl₂(TeMes₂)₂].2 cis-[PdCl₂{MesTeCH₂C₆H₂(4,6- $[Pd_2(\mu$ trans-[PdCl₂(TeMes₂)₂].toluene MeCN $Cl_2Cl_2(TeMes_2)_2].$ Me₂)TeMes}] 2acetone 1a.C₆H₅Me **2a.**2 acetone 4 1a. 2CH₃CN chemical formula C₂₇H₃₂Cl₂PdTe₂ $C_{36}H_{44}Cl_2PdTe_2$. C₃₆H₄₄ Cl₂PdTe₂.C₇H₈ $C_{36}H_{44}Cl_4Pd_2Te_2$. 2CH₃CN $C_{6}H_{12}O_{2}$ formula weight 991.32 1001.35 1202.67 789.03 cryst size (mm³) 0.15 0.05 x 0.02 0.1 x 0.1 x 0.05 0.15 x 0.13 x 0.10 0.14 x 0.05 x 0.01 crysta system monoclinic Triclinic monoclinic Monoclinic $P2_1/n$ *P*-1 $P2_1/c$ $P2_1/c$ space group Cu K/ α (1.5418) Cu K/ α (1.5418) Mo K/α (0.71073) Radiation (wavelength Cu K/ α (1.5418) Å) 298 (2) temperature (K) 298 (2) 298 (2) 298 (2) unit cell dimensions a (Å) 8.8514(16) 11.3836(8) 9.9444(3) 12.8111(3)10.3908(17) b (Å) 12.8965(7) 19.8187(4) 22.0756(8) c (Å) 23.3718(5) 16.0242(9) 10.5502(4)12.0377(2)α (°) 87.937(5) 90.00 90.00 90.00 β (°) 100.804(18)78.771(5) 95.709(3) 114.103(10) γ (°) 67.794(6) 90.00 90.00 90.00 volume (Å³) 2134.5(2)2304.58(13) 2789.89(10) 2111.47(7) Ζ 2 2 2 4 1.559 1.558 1.733 1.879 ρ_{calcd} (g cm⁻³) μ (mm⁻¹)/F(000) 15.596/976 15.421/988 18.466/1176 2.920/1512 limiting indices -9 < h < 10 $-13 \le h \le 12$ -11 < *h* < 11 $-16 \le h \le 15$ $-12 \le k \le 12$ $-14 \le k \le 15$ $-26 \le k \le 26$ -24 < k < 24 $-28 \le l \le 28$ $-6 \le l \le 12$ -19 < l < 18-15 < l < 15 θ for data collection (°) 1.74 - 26.393.85 - 69.912.81 - 70.044.01 - 69.90no. of reflns collected 3981 7925 4259 5696 no. of independent reflns 3585 5758 3132 5053 data/restraints/parameters 3981/0/221 7925/0/447 4259 /0 /235 5696/0/298 final R_1 , wR_2 indices 0.0459/0.1302 0.0507/0.1151 0.0674/0.1643 0.0238/0.0645 R_1 , wR_2 (all data) 0.0504/0.1344 0.0773/0.1281 0.0958/0.1747 0.0297/ 0.0755 goodness of fit on F^2 1.130 1.057 1.189 1.176

Table S1. Crystallographic and structural determination data for *trans*-[PdCl₂(TeMes₂)₂].2 MeCN, *trans*-[PdCl₂(TeMes₂)₂].toluene, [Pd₂(µ-Cl)₂Cl₂(TeMes₂)₂]. 2 acetone and *cis*-[PdCl₂{MesTeCH₂C₆H₂(4,6-Me₂)TeMes}]

Table S2. Crystallographic and structural determination data for [Pd₂(µ-OAc)₂{CH₂C₆H₂(4,6-Me₂)TeMes}₂].toluene, [Pd₂(µ-OAc)₂{CH₂C₆H₂(4,6-Me₂)Tetol-*o*}₂] and [Pd(µ-OAc)(µ-TeMes)]₄

	$[Pd_2(\mu-OAc)_2\{CH_2C_6H_2(4,6-Me_2)TeMes\}_1]$ toluene	$[Pd_2(\mu-OAc)_2\{CH_2C_6H_2(4,6-Me_2)Teto]-a_2\}$	$[Pd(\mu-OAc)(\mu-TeMes)]_4$
	5a.toluene	5b	6
chemical formula	$C_{40}H_{48}O_4Pd_2Te_2.C_7H_8$	$C_{36}H_{40}O_4Pd_2Te_2$	$C_{44}H_{56}O_8Pd_4Te_4$
r_{w}	$0.20 \times 0.15 \times 0.10$	$0.12 \times 0.10 \times 0.05$	$0.18 \times 0.05 \times 0.05$
cryst size (mm ²)	0.20 X 0.15 X 0.10 Monoclinic		0.18 X 0.05 X 0.05
space group	P2 /n	P2 /n	P_1
Radiation	$\frac{12}{1}$ Cu K/a (1.5418)	$C_{\rm L} K/\alpha (1.5418)$	r = 1 Cu K/a (1.5/18)
temperature (V)	$120\ 00(10)$	208(2)	208(2)
unit cell dimensions	150.00(10)	298(2)	298(2)
$a(\dot{A})$	11 1036(3)	12 2013(3)	8 2911(4)
a(A) b(Å)	33 0163(13)	17.2713(3)	12029(5)
$c(\hat{A})$	11 9487(3)	16 5408(5)	13 7289(6)
C(A)	90.00	90.00	72 307(4)
α() β(°)	92 641(2)	101.904(3)	72,599(4)
ρ() γ(°)	90.00	90.00	89 423(4)
$\gamma()$ volume (Å ³)	44112(2)	3575 50(18)	1239 86(10)
7	Δ	4	1
$\sum_{n=1}^{\infty} (g cm^{-3})$	1 736	1 866	2 208
$\mu (mm^{-1})/F(000)$	17 127/ 2264	21 018/ 1936	30 102/ 776
limiting indices	-13 < h < 7	-14 < h < 14	-9 < h < 10
minung malees	-33 < k < 39	-21 < k < 20	-14 < k < 14
	-14 < l < 13	$-13 \le l \le 20$	-16 < l < 16
θ for data collection (°)	394 - 7024	3 675 - 69 879	3 56-70 07
no of reflue collected	8254	6614	4648
no. of independent reflns	6016	4494	3616
data/restraints/parameters	8254/37/490	6614/ 0 /405	4648/ 0/ 279
final R_1 , wR_2 indices	0.0739/0.1838	0.0704/ 0.1732	0.0376/ 0.0846
R_1 , wR_2 (all data)	0.1009/0.2024	0.1110/ 0.1972	0.0600/ 0.0948
goodness of fit on F^2	1.047	1.066	1.042

Fig S1 XRD pattern of Pd₇Te₃ obtained from *trans*-[PdCl₂(TeMes₂)₂] in refluxing xylene.

Fig S2 XRD pattern of Pd_7Te_3 obtained from *trans*-[PdCl₂(TeMes₂)₂] in refluxing 2-ethoxy ethanol. Peaks due to elemental tellurium are marked with *.

Fig S3 SEM image of Pd₇Te₃ obtained from *trans*-[PdCl₂(TeMes₂)₂] in refluxing xylene.

Fig S4 SEM image of Pd₇Te₃ obtained from *trans*-[PdCl₂(TeMes₂)₂] in refluxing 2-ethoxy ethanol.

Fig S5 Short interactions between solvent acetonitrile and *trans*-[PdCl₂(TeMes₂)₂] in *trans*-[PdCl₂(TeMes₂)₂].2CH₃CN (**1a**.2 acetonitrile)

References

- M. Akiba, M. V. Lakshmikantham, K. Y. Jen and M. P. Cava, J. Org. Chem. 1984, 49, 4819.
- T. M. Klapotke, B. Krumm, P. Mayer, K. Polborn and I. Schwab, Z. Ang. Allg. Chem. 2005, 631, 2677.