Electronic Supporting Information (ESI)

Direct synthesis of the Janus-Head ligand (^{Me}Py)₃Sn-Sn(^{Me}Py)₃ using an unusual pyridyl-transfer reaction (^{Me}Py = 6-Methyl-pyridyl)

Raúl García-Rodríguez^{,*} and Dominic S. Wright

Chemistry Department, Cambridge University, Lensfield Road, Cambridge CB2 1EW (U.K.).

Figure S1. ¹H NMR (298 K, d₈-THF, 500 MHz) spectrum of (^{Me}Py)₃Sn-Sn(^{Me}Py)₃ (**2a**) (Py' = 6-Me-2-Py)

Figure S2. ¹³C{¹H} NMR (298 K, d₈-THF, 100.6 MHz), spectrum of $(^{Me}Py)_3$ Sn-Sn $(^{Me}Py)_3$ (**2a**) (Py' = 6-Me-2-Py).For individual expansions for each resonance showing ^{117,119}Sn satellites of the C-atoms of the ^{Me}Py ligands see Figure S3.

Note: A small amount of residual toluene is observable in the spectrum (weak resonances at 138.25, 129.48, 128.72, 125.85 and 21.29 ppm)

Figure S3. Expansions for each ${}^{13}C{}^{1}H$ NMR resonance of the ^{Me}Py ligands showing the presence of 117,119 Sn satellites for *all* of the Catoms of the ligand.

Figure S4. ¹H-¹³C HSQC (298 K, d_8 -THF, 500 MHz) left and ¹H-¹³C HMBC (298 K, d_8 -THF, 500 MHz) right spectra of (^{Me}Py)₃Sn-Sn(^{Me}Py)₃ (2a) (Py' = 6-Me-2-Py).

Figure S5. ¹¹⁹Sn{¹H} NMR (186.5 MHz, 298K, rel solution of SnMe₄), spectrum of (^{Me}Py)₃Sn-Sn(^{Me}Py)₃ (2a) (Py' = 6-Me-2-Py). No ¹¹⁹Sn-¹¹⁷Sn coupling could be detected.

Figure S6. ¹H NMR (298 K, d_8 -THF, 500 MHz) spectra of the reaction of an equimolar mixture of **1a** with SnCl₂ in d_8 -THF. Within 15 min of mixing the reactant at ambient temperature an orange colouration developed and **2a** (circle) was observed as the only Sn-containing species formed (See figure S7). After 24h none of the precursor **1a** remained (triangle). No 6,6'-dimethyl-2,2'-dipyridyl is observed in the reaction at any stage. ¹H NMR spectrum of 6,6'-dimethyl-2,2'-dipyridyl in d_8 -THF is shown above in black for comparison purposes

reaction of an equimolar mixture of **1a** with SnCl₂ in d₈-THF. Within 15 min of mixing the reactant at ambient temperature **2a** was observed as the only Sn-containing species formed. A characteristic sharp resonance for AlCl₄⁻ was also observed in the ²⁷Al NMR spectra shows the presence of broad signals at δ =150 and δ =128 ppm after 24h, suggesting the possible formation of heteroleptic aluminum species containing the ethyl group

Note: The broad signal at around 65ppm in the ²⁷Al NMR spectra arises from probe background.

Figure S8. ¹H NMR (298 K, toluene-d₈, 500 MHz) spectra, above, and ¹¹⁹Sn{¹H} NMR (298 K, toluene-d₈, 186.5 MHz) spectra, below, of $Sn(2-Py)_4$ in toluene-d₈ before (a) and after heating at 80°C in toluene for 24h (b) and 5days (c).

Note: Sn(Py)₄ was synthesized as described recently in the literature (ref 11 in the main text).

Figure S9. ¹¹⁹Sn{¹H} NMR (298 K, THF, CDCl₃ capillary, 186.5 MHz) **spectrum, above, and ¹H NMR** (298 K, THF, CDCl₃ capillary, 500 MHz), spectrum, below, of the reaction of an equimolar mixture of SnCl₂ and 2 equivalents of 2-Li-^{Me}Py in THF at -78°C. The mixture was allowed to warm to room temperature and stirred for 1h before ¹¹⁹Sn and ¹H NMR spectra were obtained. The formation of **2a** was apparent in the ¹H and ¹¹⁹Sn NMR spectra along with other unidentified products. The ¹H NMR spectrum of (^{Me}Py)₃Sn-Sn(^{Me}Py)₃ (**2a**) in d₈-THF is shown in red for comparison purposes.

Note: We note that **2a** is unstable in the reaction mixture and slowly decomposed at 45°C. After 2days at 45°C no **2a** was observed in ¹H or ¹¹⁹Sn NMR spectra.

Figure S10. ¹¹⁹Sn{¹H} NMR (298 K, d₈-THF, 186.5 MHz) spectrum, above, and ²⁷Al NMR (298 K, d₈-THF, 130.3 MHz) spectrum, below, of the reaction of an equimolar mixture of **1b** with SnCl₂ in d₈-THF after 24h at room temperature. The ¹¹⁹Sn NMR spectrum shows that three major Sn-containing products are generated after 24h: an unidentified species at δ -130 ppm (s.), [(2-Py)₃Sn-Sn(Py)₃] (**2b**) [assigned on the basis of its chemical shift, δ -218.7 ppm (s)] and another species (**3**) observed as two broad singlets. The ²⁹Al NMR spectrum shows the characteristic sharp resonance for AlCl₄⁻ along with the formation of **3**. (δ = 23.8 ppm).

Note: The broad signal at around 65ppm in the ²⁷Al NMR spectrum arises from probe background.

Figure S11. ¹¹⁹Sn{¹H} NMR (298 K, d₈-THF, 186.5 MHz) spectrum, left, and ²⁷Al NMR (298 K, d₈-THF, 130.3 MHz) spectrum, right, of [{Sn(2-Py)₃}Al{(μ-Cl)(2-py)₂Sn(Cl)}] (**3**).

Note 1: changes up to 2 ppm were observed for the chemical shift of the broad ¹¹⁹Sn resonances of compound **3**.

Note 2: The broad signal at around 65ppm in the ²⁷Al NMR spectrum arises from probe background.

Figure S12. ¹H NMR (298 K, d₈-THF, 500 MHz) spectrum of [$\{Sn(2-Py)_3\}Al\{(\mu-Cl)(2-py)_2Sn(Cl)\}$] (**3**). The triangles show the presence of three spin systems evidencing the presence of three magnetically inequivalent pyridyl rings. The assignment was done with the help of a ¹H-¹H COSY NMR experiment (see fig S13). The presence of three 2-Py environments in the ratio 2 : 2 : 1 suggests that the solid-state structure of **3** is maintained in solution.

Note 1: We found that **3** had a marked tendency to decompose, yielding free pyridine (*). The unstable nature of compound **3** prevented a more detailed NMR study.

Note 2: The ¹H NMR spectrum showed contamination with trace quantities of toluene that can be observed in the region 7.05-7.20 ppm.

Figure S13 ¹H-¹H COSY (298 K, d_8 -THF, 500 MHz) spectrum of [{Sn(2-Py)₃}Al{(μ -Cl)(2-py)₂Sn(Cl)}] (3).

	2a	3
formula	C36 H36 N6 Sn2	C ₅₄ H ₄₈ Al ₂ Cl ₄ N ₁₀ O Sn ₄
$M_{\rm f}$	790.09	1523.54
crystal system	Monoclinic	Monoclinic
a/Å	9.1614(13)	16.4409(18)
b/Å	9.8389(12)	19.855(2)
c/Å	19.420(3)	17.9265(18)
$\alpha/^{\circ}$	90.00	90.00
β/°	103.551(4)	90.455(3)
$\gamma/^{\circ}$	90.00	90.00
V/Å ³	1701.7(4)	5851.8(11)
T/K	199(2)	200(2)
space group	$P2_1/n$	$P2_1/n$
Ż	2	4
Radiation type	ΜοΚα	ΜοΚα
μ (MoK α)/mm ⁻¹	1.501	1.947
reflns collected	30472	110543
Indep. Refl.	3001	10596
R _{int}	0.0798	0.1076
$R_{I}^{I}(I > 2\sigma(I))$	0.0352	0.0752
$wR(F^2)$ (all data)	0.1139	0.2140
GOF on F^2	1.095	1.116
CCDC number	1008866	1008867

Table S1. Crystal, measurement and refinement data for the compounds studied by X-ray diffraction