Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2014

## **Supporting Information**

## A luminescent cadmium metal-organic frameworks for sensing of nitroaromatic explosives

Chuanqi Zhang, Libo Sun, Yan Yan, Jiyang Li, Xiaowei Song,\* Yunling Liu and Zhiqiang Liang\*

<sup>a</sup> State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin

University, Changchun 130012, P. R. China

Fig. S1 Reported high symmetric aromatic polycarboxylates ( $H_2BDC^1$ ,  $H_3BTC^2$ ,  $H_3BTB^3$ ) and unsymmetrical aromatic polycarboxylate ( $H_3BTP^4$ , N-Heteroarene containing linkers derived from  $H_3BTP^5$ ,  $H_3ABTA^6$ , 5-(4-carboxybenzoylamino)-isophthalic acid ( $H_3L$ )<sup>7</sup>, and  $H_3CPEIP^8$ .





Fig. S2 Representation of the asymmetric unit of 1 showing ellipsoid at the50% probability

level.



Fig. S3 Infra-red spectra of the H<sub>3</sub>TPT, MOF-1 and MOF-1'.



Fig. S4 PXRD patterns of the simulated pattern calculated from the single crystal X-ray data, the as-systhesized sample 1, micrometer-sized 1' and sample of 1' after PA quenching and recovery test for five times.



Fig. S5 The SEM image of micrometer-sized 1'



Fig. S6 The TGA curve of 1



Fig. S7 CO<sub>2</sub> adsorption-desorption isotherms measured at 195 K and 273 K.



**Fig. S8** Fluorescence titrations of 0.5mg **1'** dispersed in 2mL ethanol solution with the addition of different volume of 0.001M solution of nitromethane (a), 2, 4-dinitrophenol (DNP) (b), 4- nitrobenzaldehyde (c), 2, 4, 6-trinitrotoluene (TNT) (d), 4-chloronitrobenzene (e), 2-nitrotoluene (f), 4-nitrotoluene (g), and 4- nitrophenol (h) in ethanol. Excited at 334 nm and fluorescence emission was recorded from 350 nm to 500 nm. The slit width for both excitation and emission was 1.5 nm.



Fig. S9 Plot of  $I_o/I$  versus PA concentration in ethanol for 1'.



Fig. S10 Spectral overlaps between the absorption spectra of analytes with the concentration of  $1.0 \times 10^{-3}$  M and the emission spectra of 1' in ethanol ( $2.06 \times 10^{-4}$  M).



**Fig. S11** (a) The luminescent spectra of **1**' on double-sided tape at different time, and the photographs of the layer of **1**' under the sunlight and the UV light (inset). The vapor sensing of **1**' for 2,4-dinitrophenol (b), 2,4-dinitrotoluene (c), 4-nitrobenzaldehyde (d), 4-nitrotoluene (e), 4- nitrophenol (f), m-nitrotoluene (g), and picric acid (h).



Fig. 12 The  $^{1}$ H and  $^{13}$ C NMR spectra of M1



Fig. 13 The  $^{1}$ H and  $^{13}$ C NMR spectra of M2



Fig. S14 The  ${}^{1}\text{H}$  and  ${}^{13}\text{C}$  NMR spectra of  $H_{3}\text{TPT}$ 

| -                                    |                                                            |
|--------------------------------------|------------------------------------------------------------|
| Empirical formula                    | $C_{48}H_{37}Cd_3N_2O_{14.5}$                              |
| Formula weight                       | 1211.04                                                    |
| Temperature                          | 293(2) K                                                   |
| Wavelength                           | 0.71073 Å                                                  |
| Crystal system, space group          | Monoclinic, C2/c                                           |
|                                      | $a = 19.524(4) \text{ Å} \qquad \alpha = 90^{\circ}$       |
| Unit cell dimensions                 | $b = 10.049(2) \text{ Å} \qquad \beta = 95.409(4)^{\circ}$ |
|                                      | $c = 25.359(5) \text{ Å} \qquad \gamma = 90^{\circ}$       |
| Volume                               | 4953.2(17) Å <sup>3</sup>                                  |
| Ζ                                    | 2                                                          |
| Absorption coefficient               | 1.343 mm <sup>-1</sup>                                     |
| F (000)                              | 2392                                                       |
| Theta range for data collection      | 1.61 to 28.21°                                             |
| Limiting indices                     | -25≤ h≤25, -13≤k≤9, -29≤l≤33                               |
| Reflections collected / unique       | 17595 / 6090                                               |
| R int                                | 0.1021                                                     |
| Completeness to theta $= 28.21$      | 99.6 %                                                     |
| Absorption correction                | Semi-empirical from equivalents                            |
| Max. and min. transmission           | 0.7751 and 0.7476                                          |
| Refinement method                    | Full-matrix least-squares on F <sup>2</sup>                |
| Data / restraints / parameters       | 6090 / 7 / 311                                             |
| Goodness-of-fit on $F^2$             | 1.013                                                      |
| Final R indices $[I \ge 2\sigma(I)]$ | $R_1 = 0.0704, wR_2 = 0.1698$                              |
| R indices (all data)                 | $R_1 = 0.1487, wR_2 = 0.2050$                              |
| Largest diff. peak and hole          | 1.612 and -1.183 e. Å <sup>-3</sup>                        |

 Table S1. Crystal Data and Structure Refinement for 1

 ${}^{b}R_{1} = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|. wR_{2} = [\sum [w (F_{o}^{2} - F_{c}^{2})^{2}] / \sum [w (F_{o}^{2})^{2}]]^{1/2}.$ 

**Table. S2** Selected bond lengths [Å] and angles [°] for **1**. Bond lengths / Å

| Bond lengths / A |          |             |          |
|------------------|----------|-------------|----------|
| Cd(1)-O(5)#1     | 2.180(3) | C(6)-H(6)   | 0.93     |
| Cd(1)-O(4)#2     | 2.270(3) | C(7)-H(7)   | 0.93     |
| Cd(1)-O(3)#3     | 2.308(3) | C(8)-C(13)  | 1.376(7) |
| Cd(1)-O(2)       | 2.354(4) | C(8)-C(9)   | 1.394(7) |
| Cd(1)-O(1)       | 2.363(4) | C(9)-C(10)  | 1.371(7) |
| Cd(1)-O(3)#2     | 2.529(3) | C(9)-H(9)   | 0.93     |
| Cd(2)-O(6)#4     | 2.215(3) | C(10)-C(11) | 1.403(7) |
| Cd(2)-O(6)#1     | 2.215(3) | C(10)-H(10) | 0.93     |
| Cd(2)-O(7)       | 2.289(4) | C(11)-C(12) | 1.373(7) |
| Cd(2)-O(7)#5     | 2.289(4) | C(11)-C(14) | 1.484(6) |
| Cd(2)-O(1)       | 2.293(4) | C(12)-C(13) | 1.374(7) |
| Cd(2)-O(1)#5     | 2.294(4) | C(12)-H(12) | 0.93     |
| O(1)-C(1)        | 1.244(6) | C(13)-H(13) | 0.93     |
| O(2)-C(1)        | 1.245(6) | C(14)-C(19) | 1.396(6) |

| 1.255(6) | C(14)-C(15)                                                                                                                                                                                                                          | 1.402(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.308(3) | C(15)-C(16)                                                                                                                                                                                                                          | 1.391(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2.529(3) | C(15)-H(15)                                                                                                                                                                                                                          | 0.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1.253(6) | C(16)-C(17)                                                                                                                                                                                                                          | 1.370(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2.270(3) | C(16)-C(20)                                                                                                                                                                                                                          | 1.499(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1.233(6) | C(17)-C(18)                                                                                                                                                                                                                          | 1.385(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2.180(3) | C(17)-H(17)                                                                                                                                                                                                                          | 0.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1.256(5) | C(18)-C(19)                                                                                                                                                                                                                          | 1.387(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2.215(3) | C(18)-C(21)                                                                                                                                                                                                                          | 1.506(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1.244(8) | C(19)-H(19)                                                                                                                                                                                                                          | 0.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1.488(6) | C(22)-N(1)                                                                                                                                                                                                                           | 1.317(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1.377(7) | C(22)-H(22)                                                                                                                                                                                                                          | 0.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1.378(8) | N(1)-C(24)                                                                                                                                                                                                                           | 1.369(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1.379(7) | N(1)-C(23)                                                                                                                                                                                                                           | 1.433(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.93     | C(23)-H(23A)                                                                                                                                                                                                                         | 0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1.396(7) | C(23)-H(23B)                                                                                                                                                                                                                         | 0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.93     | C(23)-H(23C)                                                                                                                                                                                                                         | 0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1.381(7) | C(24)-H(24A)                                                                                                                                                                                                                         | 0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1.499(7) | C(24)-H(24B)                                                                                                                                                                                                                         | 0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1.402(7) | C(24)-H(24C)                                                                                                                                                                                                                         | 0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | $\begin{array}{c} 1.255(6)\\ 2.308(3)\\ 2.529(3)\\ 1.253(6)\\ 2.270(3)\\ 1.233(6)\\ 2.180(3)\\ 1.256(5)\\ 2.215(3)\\ 1.244(8)\\ 1.377(7)\\ 1.378(8)\\ 1.379(7)\\ 0.93\\ 1.396(7)\\ 0.93\\ 1.381(7)\\ 1.499(7)\\ 1.402(7)\end{array}$ | 1.255(6) $C(14)$ - $C(15)$ $2.308(3)$ $C(15)$ - $C(16)$ $2.529(3)$ $C(15)$ - $H(15)$ $1.253(6)$ $C(16)$ - $C(17)$ $2.270(3)$ $C(16)$ - $C(20)$ $1.233(6)$ $C(17)$ - $C(18)$ $2.180(3)$ $C(17)$ - $H(17)$ $1.256(5)$ $C(18)$ - $C(21)$ $1.244(8)$ $C(19)$ - $H(19)$ $1.488(6)$ $C(22)$ - $N(1)$ $1.377(7)$ $C(22)$ - $H(22)$ $1.378(8)$ $N(1)$ - $C(24)$ $1.379(7)$ $N(1)$ - $C(23)$ $0.93$ $C(23)$ - $H(23A)$ $1.396(7)$ $C(24)$ - $H(24A)$ $1.499(7)$ $C(24)$ - $H(24C)$ |

Bond angles / °

| -                   |            |                   |          |
|---------------------|------------|-------------------|----------|
| O(5)#1-Cd(1)-O(4)#2 | 128.21(12) | C(4)-C(5)-C(8)    | 121.6(4) |
| O(5)#1-Cd(1)-O(3)#3 | 85.13(12)  | C(5)-C(6)-C(7)    | 119.9(5) |
| O(4)#2-Cd(1)-O(3)#3 | 111.10(12) | C(5)-C(6)-H(6)    | 120      |
| O(5)#1-Cd(1)-O(2)   | 137.65(15) | C(7)-C(6)-H(6)    | 120      |
| O(4)#2-Cd(1)-O(2)   | 93.66(15)  | C(2)-C(7)-C(6)    | 121.0(5) |
| O(3)#3-Cd(1)-O(2)   | 84.98(12)  | C(2)-C(7)-H(7)    | 119.5    |
| O(5)#1-Cd(1)-O(1)   | 103.27(14) | C(6)-C(7)-H(7)    | 119.5    |
| O(4)#2-Cd(1)-O(1)   | 103.26(14) | C(13)-C(8)-C(9)   | 117.9(5) |
| O(3)#3-Cd(1)-O(1)   | 127.89(12) | C(13)-C(8)-C(5)   | 120.7(5) |
| O(2)-Cd(1)-O(1)     | 54.24(13)  | C(9)-C(8)-C(5)    | 121.4(5) |
| O(5)#1-Cd(1)-O(3)#2 | 85.43(11)  | C(10)-C(9)-C(8)   | 121.6(5) |
| O(4)#2-Cd(1)-O(3)#2 | 54.11(11)  | C(10)-C(9)-H(9)   | 119.2    |
| O(3)#3-Cd(1)-O(3)#2 | 77.04(12)  | C(8)-C(9)-H(9)    | 119.2    |
| O(2)-Cd(1)-O(3)#2   | 131.65(14) | C(9)-C(10)-C(11)  | 121.1(5) |
| O(1)-Cd(1)-O(3)#2   | 153.68(13) | C(9)-C(10)-H(10)  | 119.4    |
| O(5)#1-Cd(1)-C(1)   | 123.53(14) | C(11)-C(10)-H(10) | 119.4    |
| O(4)#2-Cd(1)-C(1)   | 98.73(13)  | C(12)-C(11)-C(10) | 115.4(4) |
| O(3)#3-Cd(1)-C(1)   | 107.67(13) | C(12)-C(11)-C(14) | 123.0(4) |
| O(2)-Cd(1)-C(1)     | 27.14(14)  | C(10)-C(11)-C(14) | 121.6(4) |
| O(1)-Cd(1)-C(1)     | 27.12(13)  | C(11)-C(12)-C(13) | 124.7(5) |
| O(3)#2-Cd(1)-C(1)   | 150.62(13) | C(11)-C(12)-H(12) | 117.7    |

| O(5)#1-Cd(1)-C(20)#2 | 108.73(13) | С(13)-С(12)-Н(12)   | 117.7    |
|----------------------|------------|---------------------|----------|
| O(4)#2-Cd(1)-C(20)#2 | 27.00(13)  | C(12)-C(13)-C(8)    | 119.2(5) |
| O(3)#3-Cd(1)-C(20)#2 | 93.10(13)  | C(12)-C(13)-H(13)   | 120.4    |
| O(2)-Cd(1)-C(20)#2   | 112.85(16) | C(8)-C(13)-H(13)    | 120.4    |
| O(1)-Cd(1)-C(20)#2   | 129.65(15) | C(19)-C(14)-C(15)   | 118.1(4) |
| O(3)#2-Cd(1)-C(20)#2 | 27.22(12)  | C(19)-C(14)-C(11)   | 120.2(4) |
| C(1)-Cd(1)-C(20)#2   | 124.49(14) | C(15)-C(14)-C(11)   | 121.7(4) |
| O(6)#4-Cd(2)-O(6)#1  | 180.00(18) | C(16)-C(15)-C(14)   | 121.1(4) |
| O(6)#4-Cd(2)-O(7)    | 91.84(13)  | C(16)-C(15)-H(15)   | 119.5    |
| O(6)#1-Cd(2)-O(7)    | 88.15(13)  | C(14)-C(15)-H(15)   | 119.5    |
| O(6)#4-Cd(2)-O(7)#5  | 88.15(13)  | C(17)-C(16)-C(15)   | 119.1(4) |
| O(6)#1-Cd(2)-O(7)#5  | 91.85(13)  | C(17)-C(16)-C(20)   | 121.2(4) |
| O(7)-Cd(2)-O(7)#5    | 180.000(1) | C(15)-C(16)-C(20)   | 119.8(4) |
| O(6)#4-Cd(2)-O(1)    | 92.98(14)  | C(16)-C(17)-C(18)   | 121.5(4) |
| O(6)#1-Cd(2)-O(1)    | 87.02(14)  | C(16)-C(17)-H(17)   | 119.2    |
| O(7)-Cd(2)-O(1)      | 100.63(14) | C(18)-C(17)-H(17)   | 119.2    |
| O(7)#5-Cd(2)-O(1)    | 79.37(14)  | C(17)-C(18)-C(19)   | 119.1(4) |
| O(6)#4-Cd(2)-O(1)#5  | 87.02(14)  | C(17)-C(18)-C(21)   | 119.7(4) |
| O(6)#1-Cd(2)-O(1)#5  | 92.98(14)  | C(19)-C(18)-C(21)   | 121.2(4) |
| O(7)-Cd(2)-O(1)#5    | 79.37(14)  | C(18)-C(19)-C(14)   | 121.0(4) |
| O(7)#5-Cd(2)-O(1)#5  | 100.63(14) | C(18)-C(19)-H(19)   | 119.5    |
| O(1)-Cd(2)-O(1)#5    | 180.00(13) | C(14)-C(19)-H(19)   | 119.5    |
| C(1)-O(1)-Cd(2)      | 157.2(4)   | O(4)-C(20)-O(3)     | 122.2(4) |
| C(1)-O(1)-Cd(1)      | 92.9(3)    | O(4)-C(20)-C(16)    | 117.1(4) |
| Cd(2)-O(1)-Cd(1)     | 106.18(14) | O(3)-C(20)-C(16)    | 120.6(4) |
| C(1)-O(2)-Cd(1)      | 93.3(3)    | O(4)-C(20)-Cd(1)#7  | 55.4(2)  |
| C(20)-O(3)-Cd(1)#6   | 124.7(3)   | O(3)-C(20)-Cd(1)#7  | 67.2(2)  |
| C(20)-O(3)-Cd(1)#7   | 85.6(3)    | C(16)-C(20)-Cd(1)#7 | 170.1(3) |
| Cd(1)#6-O(3)-Cd(1)#7 | 102.96(12) | O(5)-C(21)-O(6)     | 126.4(4) |
| C(20)-O(4)-Cd(1)#7   | 97.6(3)    | O(5)-C(21)-C(18)    | 117.8(4) |
| C(21)-O(5)-Cd(1)#8   | 124.4(3)   | O(6)-C(21)-C(18)    | 115.9(4) |
| C(21)-O(6)-Cd(2)#4   | 133.1(3)   | O(7)-C(22)-N(1)     | 123.6(6) |
| C(22)-O(7)-Cd(2)     | 119.1(4)   | O(7)-C(22)-H(22)    | 118.2    |
| O(1)-C(1)-O(2)       | 119.5(4)   | N(1)-C(22)-H(22)    | 118.2    |
| O(1)-C(1)-C(2)       | 121.4(4)   | C(22)-N(1)-C(24)    | 130.8(7) |
| O(2)-C(1)-C(2)       | 119.1(4)   | C(22)-N(1)-C(23)    | 116.6(6) |
| O(1)-C(1)-Cd(1)      | 60.0(3)    | C(24)-N(1)-C(23)    | 112.5(7) |
| O(2)-C(1)-Cd(1)      | 59.6(2)    | N(1)-C(23)-H(23A)   | 109.5    |
| C(2)-C(1)-Cd(1)      | 174.5(3)   | N(1)-C(23)-H(23B)   | 109.5    |
| C(3)-C(2)-C(7)       | 119.6(5)   | H(23A)-C(23)-H(23B) | 109.5    |
| C(3)-C(2)-C(1)       | 121.1(4)   | N(1)-C(23)-H(23C)   | 109.5    |
| C(7)-C(2)-C(1)       | 119.3(4)   | H(23A)-C(23)-H(23C) | 109.5    |
| C(2)-C(3)-C(4)       | 119.3(5)   | H(23B)-C(23)-H(23C) | 109.5    |
| C(2)-C(3)-H(3)       | 120.4      | N(1)-C(24)-H(24A)   | 109.5    |
|                      |            |                     |          |

| C(4)-C(3)-H(3) | 120.4    | N(1)-C(24)-H(24B)   | 109.5 |
|----------------|----------|---------------------|-------|
| C(3)-C(4)-C(5) | 122.4(5) | H(24A)-C(24)-H(24B) | 109.5 |
| C(3)-C(4)-H(4) | 118.8    | N(1)-C(24)-H(24C)   | 109.5 |
| C(5)-C(4)-H(4) | 118.8    | H(24A)-C(24)-H(24C) | 109.5 |
| C(6)-C(5)-C(4) | 117.8(5) | H(24B)-C(24)-H(24C) | 109.5 |
| C(6)-C(5)-C(8) | 120.6(5) |                     |       |

References

- (a). N. L. Rosi, J. Eckert, M. Eddaoudi, D. T. Vodak, J. Kim, M. O'Keeffe, and O. M. Yaghi, *Science.*, 2003, 300, 1127-1129; (b). M. Eddaoudi, H.-L. Li, and O. M. Yaghi, *J. Am. Chem. Soc.*, 2000, 122, 1391-1397.
- (a). T. Devic, C. Serre, N. Audebrand, J. Marrot, and G. Férey, J. Am. Chem. Soc., 2005, 127, 12788-12789;
   (b). S. S. Y. Chui, S. M. F. Lo, J. P. H. Charmant, A. G. Orpen, and I. D. Williams, Science., 1999, 283, 1148-1150.
- 3. P. V. Dau, K. K. Tanabe, and S. M. Cohen, Chem. Commun., 2012, 48, 9370-9372.
- 4. A. G. Wong-Foy, O. Lebel and A. J. Matzger, J. Am. Chem. Soc., 2007, 129, 15740-15741.
- 5. T.-H. Park, K. A. Cychosz, A. G. Wong-Foy, A. Dailly, and A. J. Matzger, *Chem. Commun.*, 2011, **47**, 1452-1454.
- 6. (a). Z. Jin, H.-Y. Zhao, D.-J. Yang, X.-D. Yao, and G.-S. Zhu, *Inorg. Chem. Commun.*, 2012, 25, 74-78; (b).
   M. Meng, D.-C. Zhong, and T.-B. Lu, *CrystEngComm.*, 2011, 13, 6794-6800.
- 7. (a). W. Zhao, J. Han, G. Tian, and X.-L. Zhao, CrystEngComm., 2013, 15, 7522-7530; (b). J.-G. Duan, Z.
- Yang, J.-F. Bai, B.-S. Zheng, Y.-Z. Li and S.-H. Li, Chem. Commun., 2012, 48, 3058-3060.
- (a). Z.-Q. Liang, J.-J. Du, L.-B. Sun, J. Xu, Y. Mu, Y. Li, J.-H. Yu, and R.-R. Xu, *Inorg. Chem.*, 2013, 52, 10720-10722;
   (b). J. Xu, L.-B. Sun, H.-Z. Xing, Z.-Q. Liang, J.-H. Yu, and R.-R. Xu, *Inorg. Chem. Commun.*, 2011, 14, 978-981;
   (c). B. Gole, A. K. Bar, and P. S. Mukherjee, *Chem. Commun.*, 2011, 47, 12137-12139.