Electronic Supplementary Information

Custom designed nanocrystalline Li₂MSiO₄/reduced graphene oxide (M=Fe, Mn) formulations as high capacity cathodes for rechargeable lithium batteries

D. Bhuvaneswari^a, N. Kalaiselvi^{*,a}

^a- ECPS Division, CSIR-Central Electrochemical Research Institute, Karaikudi-630006, India.

Fax: +91 04565-227779 E-mail: <u>kalaiselvicecri@gmail.com</u>

1. Synthesis of rGO and Li₂MSiO₄/ rGO Nanocomposites

Primarily, 1g of graphite flakes were chemically oxidized by treatment with 50 ml of 98% H₂SO₄, 3g of KMnO₄1g of NaNO₃and 30% H₂O₂wereadded to complete the reaction. The product was washed by 3% HCl in order to remove Mn²⁺ and SO₄²⁻followed by mixed aqueous solution of 3%H₂SO₄ and 0.5% H₂O₂ to eliminate other impurities and centrifuged. Further, washing was continued with water until neutral pH is realized. Finally, the residue was dried in vacuum oven at overnight to remove the moisture content. The resultant product isgraphite oxide. Subsequently, graphite oxide was diluted with water and subjected to mild sonication for longer time followed by centrifugation, during which the supernatant liquid viz., graphene oxide(GO) was collected carefully. Further, chemical reduction of graphene oxide (GO) was carried out by treating the same with hydrazine hydrate. The contents upon heating in an oil bath at 100 °C for 24h form the precipitate of reduced GO(rGO), which appears as a black solid.In the present study, 500 mg of ortho silicate active material was added directly to GO solution and reduced with hydrazine hydrate to get in-situ reduced Li₂MSiO₄/rGO. The nanocomposites of Li₂MSiO₄/CNT were obtained by mixing the native silicate powders individually with CNT (10

wt%) and ballmilled for 2h to obtain the homogeneous distribution of CNT upon cathode active material.

2. Synthesis of Li₂FeSiO₄ and Li₂MnSiO₄ by sol-gel method

Li₂MnSiO₄ nanoparticles were synthesized from the starting materials of LiCH₃COO (Sigma-Aldrich), SiO₂(Sigma-Aldrich), Mn(CH₃COO)₂(Sigma-Aldrich) and citric acid (Sigma-Aldrich) using a conventional sol–gelmethod. A stoichiometric amount of each material was dissolved in water and mixed well with an aqueous solution of 1M citric acid (as a chelating agent. The mixture was evaporated at 90 °C to form a transparent sol. Then, the sol was transferred to vacuum oven and dried at 110 °C to obtain the dried products. The procedure was adoted for Li₂FeSiO₄ synthesis with the starting materials of LiCH₃COO (Sigma-Aldrich), SiO₂(Sigma-Aldrich), Fe(C₂O₄) (Sigma-Aldrich) and citric acid (Sigma-Aldrich). The resulting precursor was finely ground and calcined at 700 °C for 5h in Ar atmosphere to yield the final powder product.

Fig. S1. XRD pattern of sol-gel synthesized (a) Li₂FeSiO₄ and (b) Li₂MnSiO₄

Fig. S2.Typical TG-DTA behavior of Li₂FeSiO₄/rGO composite powder

Fig. S3. SEM images of (a) Li₂FeSiO₄ and (b) Li₂MnSiO₄ samples synthesized by solvothermal process

Fig. S4. SEM images of sol-gel derived (a-b) Li₂FeSiO₄and (c-d) Li₂MnSiO₄ synthesized at

700°C

Fig. S5. Elemental mapping results of (a) Li₂FeSiO₄ (b) Li₂MnSiO₄ samples, indicating the homogeneous distribution of Fe/Mn, Si, and O atoms

Fig. S6. TEM images of (a) Li₂FeSiO₄(b) Li₂MnSiO₄ samples synthesized by solvothermal process at 300°C; (c-d) typical TEM images of Li₂MnSiO₄/C prepared by ball milling of orthosilicate active material with 10 wt% of super P carbon; (e-f) Typical TEM images of Li₂MnSiO₄/CNT composite

Fig. S7. TEM images of (a-b) Li₂FeSiO₄/rGO and (c-d) Li₂MnSiO₄/rGO composites

Fig. S8. FT-IR spectra of (a) Li₂FeSiO₄ and (b) Li₂MnSiO₄ samples

Fig. S9. (a) Raman spectrum of Graphite oxide and Graphene oxide synthesized by modified Hummer's method; (b) Reduced graphene oxide after the addition of hydrazine hydrate followed by thermal treatment

Fig. S10. Charge and discharge profile of first and second cycles and respective cycling performance of super P composite electrode measured at C/20 rate (a-b) Li₂FeSiO₄/C samples; (b) Li₂MnSiO₄/C sample

Fig. S11. Ex-situ XRD analysis during cycling of the Li₂FeSiO₄/rGO and Li₂MnSiO₄/rGO electrodes after cycling

Fig. S12. Impedance behavior of individual electrodes at the first and 10th cycle

Fig. S13. Conductivity behavior of (a-b) bare Li₂MSiO₄ powder samples; (c-d) Li₂FeSiO₄/CNT and Li₂MnSiO₄/CNT composite; (e-f) Li₂FeSiO₄/rGO and Li₂MnSiO₄/rGO cathode