Supporting Information

Photoinduced hydrogen evolution by a pentapyridine cobalt complex: elucidating some mechanistic aspects.

Elisa Deponti,^{‡a} Alessandra Luisa, ^{‡b} Mirco Natali,^{a*}Elisabetta Iengo,^{b*} and Franco Scandola ^{a*}

(a) Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Ferrara, via Fossato di Mortara 17-19, and Centro Interuniversitario per la Conversione Chimica dell'Energia Solare, sezione di Ferrara, via L. Borsari 46, 44121 Ferrara, Italy.

E-mail: mirco.natali@unife.it, snf@unife.it.

(d) Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, via L. Giorgeri 1, 34127 Trieste, Italy.

E-mail: eiengo@units.it

 \ddagger These authors contributed equally to the paper.

Synthesis and characterization

[Co(II)(Py5)Cl]Cl (1). 1 was obtained following a slightly adapted literature procedure [R. J. M. Klein Gebbink, R. T. Jonas and T. D. P. Stack, *Inorg.Chem.*, 2002, 41, 4633]. Py5 (50.0 mg, 0.10 mmol) and CoCl₂·6H₂O (23.8 mg, 0.10 mmol) were dissolved in methanol (15 mL) and refluxed under Ar atmosphere. The reaction was followed by thin layer chromatography (SiO₂, CH₂Cl₂/MeOH = 95/5, R_f = 0.52 and 0.02 for Py5 and 1, respectively), until complete consumption of the ligand. The pink solution was concentrated in vacuum and a pink microcrystalline solid was precipitated by addition of diethyl ether. The solid was filtered, washed thoroughly with cold diethyl ether and dried under vacuum. Yield: 54.0 mg (89.2%). ESI-MS: m/z calcd. for C₂₉H₂₅ N₅O₂ClCo (1⁺) 569.1, found 569.1.

Table S1. Photolysis data at different catalyst concentration and at pH 4: turnover numbers (TONs), turnover frequencies (TOFs), and initial rates.^{*a*}

[1] (µM)	TON	TOF (min ⁻¹)	Initial rate (µmol min ⁻¹) ^b
10	100	4.8	0.24
25	111	3.9	0.49
50	187	8.1	2.03
75	181	5.7	2.13
100	169	5.8	2.92

^{*a*} Data referred to experiments shown in Figure 2 of the main article obtained upon continuous visible irradiation ($\lambda > 400$ nm) of 1 M acetate buffer pH 4 solutions (5 mL) containing 0.5 mM Ru(bpy)₃²⁺, 0.1 M ascorbic acid, and **1** (10-100 μ M); ^{*b*} initial rates are calculated from the slope in the linear part of the kinetic traces.

Table S2. Photolysis data at different pH and at 50 μ M 1: turnover numbers (TONs), turnover frequencies (TOFs), and rates.^{*a*}

рН	TON	TOF (min ⁻¹)	Initial rate (µmol min ⁻¹) ^b
3	143	4.8	1.20
4	187	8.1	2.03
5	205	7.2	1.80
6	98	2.8	0.70
7	72	1.0	0.25

^{*a*} Data referred to experiments shown in Figure S1 obtained upon continuous visible irradiation ($\lambda > 400 \text{ nm}$) of solutions (5 mL) containing 0.5 mM Ru(bpy)₃²⁺, 0.1 M ascorbic acid, and **1** 50 μ M at different pH (1 M acetate buffer for pH 3, 4, and 5, and 1 M phosphate buffer for pH 6 and 7); ^{*b*} initial rates are calculated from the slope in the linear part of the kinetic traces.

Figure S1. (a) Hydrogen evolution kinetics obtained upon continuous visible irradiation ($\lambda > 400$ nm) of solutions (5 mL) containing 0.5 mM Ru(bpy)₃²⁺, 0.1 M ascorbic acid, and 50 μ M **1** in 1 M acetate buffer at pH 3 (black trace), pH 4 (red trace), pH 5 (blue trace), and 1 M phosphate buffer at pH 6 (green trace), and pH 7 (purple trace); (b) plot of TON and TOF as a function of the pH.

Figure S2. Comparison of absorption spectra before/after photolysis of solutions (5 mL) containing 0.5 mM Ru(bpy)₃²⁺, 0.1 M ascorbic acid, and 50 μ M **1** at (a) pH 4, (b) pH 5, and (c) pH 6.

Figure S3. (a) Photoluminescence spectra (excitation at 400 nm) of solution containing 50 μ M Ru(bpy)₃²⁺ in 1 M acetate buffer at pH 4 after addition of different aliquots of 1 (0-2 mM); (b) Stern-Volmer plot of quenching by 1.

Figure S4. (a) Photoluminescence spectra (excitation at 400 nm) of solution containing 50 μ M Ru(bpy)₃²⁺ in 1 M acetate buffer at pH 4 after addition of different aliquots of ascorbic acid (0-0.3 M); (b) Stern-Volmer plot of quenching by ascorbic acid.

Figure S5. Plot of the initial rate of hydrogen evolution vs. catalyst concentration obtained from the kinetic traces of Figure 2 of the main article. The initial rates are calculated from the slope in the linear part of the kinetic traces.