Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2014

Crystal structure, DFT, spectroscopic and biological activity evaluation of analgin complexes with Co(II), Ni(II) and Cu(II)

Ahmed M. Mansour *a

^a Chemistry Department, Faculty of Science, Cairo University Gamaa Street, Giza 12613, Egypt Fax: +20 2 35728843 eMail: <u>inorganic am@yahoo.com</u>

Supporting Information

(a)

Fig. S1: Local minimum structures of complexes (a) 1, (b) 2, and (c) 3, obtained at the DFT/B3LYP level of theory.

Table S1: Optimized bond length (Å) and angles (°) for complexes 1-3 at DFT/B3LYP level of theory					
1		2		3	
Bond length (Å)	Angles (°)	Bond length (Å)	Angles (°)	Bond length (Å)	Angles (°)
CoO2 = 1.983	O2CoN4 = 84.1	NiO2 = 1.922	O2NiN4 = 89.8	CuO2 = 2.002	O2CuN4 = 77.4
CoN4 = 2.388	O2CoO5 = 91.4	NiN4 = 2.051	O2NiO5 = 89.6	CuN4 = 2.724	O2CuO5 = 92.5
CoO5 = 1.942	O4CoO5 = 89.1	NiO5 = 2.467	O4NiO5 = 88.4	CuO5 = 1.952	O4CuO5 = 83.6
CoO39 = 1.983	O39CoN41 = 84.1	NiO39 = 1.922	O39NiN41 = 89.8	CuO39 = 2.002	O39CuN41 = 77.4
CoN41 = 2.388	O39CoO42 = 91.4	NiN41 = 2.051	O39NiO42 = 89.6	CuN41 = 2.724	O39CuO42 = 92.5
CoO42 = 1.942	N41CoO42 = 89.1	NiO42 = 2.467	N41NiO42 = 88.4	CuO42 = 1.952	N41CuO42 = 83.6

Table S2: C	omputed excit	ation energies	(eV), electronic transition configurations and oscillator
strengths (f) or	strengths (f) of the studied complexes (selected, $(f > 0.001)$		
λ (nm)	E (eV)	f	Major contributions
• 1			
761	1.6272	0.0	H(β)→L+2(β) (13%)
533	2.3231	0.0	$H(\beta) \rightarrow L+3(\beta) (27\%), H(\beta) \rightarrow L+5(\beta) (35\%)$
484	2.5577	0.0	$H-1(\beta) \rightarrow L+2(\beta) (27\%), H-1(\beta) \rightarrow L+5(\beta) (23\%)$
335	3.7004	0.0055	$H(\beta) \rightarrow L(\beta) (86\%)$
307	4.0386	0.0007	H-1(α) \rightarrow L+1(α) (46%)
• 2			
484	2.5592	0.0002	$H-1(\alpha) \rightarrow L(\alpha) (48\%), H-1(\beta) \rightarrow L(\beta) (48\%)$
415	2.9812	0.0017	H-4(α) \rightarrow L(α) (46%), H-4(β) \rightarrow L(β) (46%)
409	3.0272	0.0011	$H(\alpha) \rightarrow L+1(\alpha) (49\%), H(\beta) \rightarrow L+1(\beta) (49\%)$
• 3			
809	1.5314	0.0	$H(\beta) \rightarrow L(\beta) (38\%)$
569	2.1763	0.0064	$H-1(\beta) \rightarrow L(\beta) (97\%)$
526	2.3554	0.0067	H-3(β)→L(β) (89%)
462	2.6834	0.0131	H-4(β)→L(β) (65%)
426	2.9065	0.0164	H-7(β)→L(β) (68%)
347	3.5652	0.1172	H-13(β)→L(β) (81%)

Table S3: LUMO+3 to HOMO of [CoL2] calculated by DFT/B3LYP method.		
Orbital	Energy (eV)	Molecular orbital plot
LUMO+5	-0.60	
LUMO+3	-0.87	
LUMO+2	-0.99	
LUMO+1	-1.022	
LUMO	-1.044	

٦

Γ

НОМО	-1.99	
HOMO-1	-5.83	

Table S4 : LUMO+3 to HOMO of [NiL ₂] calculated by DFT/B3LYP method.		
Orbital	Energy (eV)	Molecular orbital plot
LUMO+1	-1.22	
LUMO	-2.34	
НОМО	-5.37	

HOMO-1	-6.06	
НОМО-4	-6.43	