Supporting Information

Heteroleptic Cationic Iridium(III) Complexes Bearing Naphthalimidyl Substituents:

Synthesis, Photophysics and Reverse Saturable Absorption

Chengkui Pei,^a Peng Cui,^{a,b} Christopher McCleese,^c Svetlana Kilina,^{a,*} Clemens Burda,^{c,*}

Wenfang Sun^{a,*}

^aDepartment of Chemistry and Biochemistry, North Dakota State University, Fargo, North

Dakota 58108-6050, United States

^bMaterials and Nanotechnology Program, North Dakota State University, North Dakota

58108, United States

^cDepartment of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United

States

Ir-3

Figure S1. Optimized ground-state geometry of Ir-1 - Ir-3 in CH_2Cl_2 at the DFT level of theory.

 Table S1.
 Dihedral angles between different parts in the C^N ligand for Ir-1 – Ir-3

Complex	Dihedral angle (°)							
	А	В	С	D	Е	F	G	Н
Ir-1	52.82	37.53	36.69	53.06	-	-	-	-
Ir-2	50.26	36.01	35.38	52.97	-	-	-	-
Ir-3	49.80	35.78	35.61	53.16	0.65	34.40	33.80	0.92

Figure S2. ¹H-NMR spectra of Ir-1 - Ir-3 in CDCl₃ at r.t.

Figure S3. Comparison of the experimental and calculated UV-vis absorption spectra of Ir-1 – Ir-3 and ligand 6 in CH_2Cl_2 .

Figure S4. Normalized UV-vis absorption spectra of Ir-1 in different solvents.

Figure S5. Normalized UV-vis absorption spectra of Ir-2 in different solvents.

Figure S6. Normalized UV-vis absorption spectra of Ir-3 in different solvents.

Figure S7. Normalized UV-vis absorption spectra of ligand 6 in different solvents.

Figure S8. Normalized emission spectra of ligand 6 in different solvents (excited at 347.5 nm).

Figure S9. Normalized emission spectra of Ir-1 in different solvents (excited at 436 nm).

Figure S10. Normalized emission spectra of Ir-2 in different solvents (excited at 436 nm).

Figure S11. Normalized emission spectra of Ir-3 in different solvents (excited at 436 nm).

Figure S12. Emission spectra of Ir-1 at different concentrations excited at 450 nm.

Figure S13. Emission spectra of Ir-2 at different concentrations excited at 450 nm.

Figure S14. Emission spectra of Ir-3 at different concentrations excited at 450 nm.

Figure S15. Emission spectra of ligand 6 at different concentrations excited at 379 nm.

Figure S16. Nanosecond time-resolved transient differential absorption spectra of Ir-1 in CH_2Cl_2 . $\lambda_{ex} = 355 \text{ nm}, A_{355 \text{ nm}} = 0.4 \text{ in a 1-cm cuvette.}$

Figure S17. Nanosecond time-resolved transient differential absorption spectra of **Ir-2** in CH₂Cl₂. $\lambda_{ex} = 355 \text{ nm}, A_{355 \text{ nm}} = 0.4$ in a 1-cm cuvette.

Figure S18. Nanosecond time-resolved transient differential absorption spectra of Ir-3 in CH₂Cl₂. $\lambda_{ex} = 355 \text{ nm}, A_{355 \text{ nm}} = 0.4 \text{ in a 1-cm cuvette.}$

Figure S19. Nanosecond time-resolved transient differential absorption spectra of ligand 6 in CH₂Cl₂. $\lambda_{ex} = 355$ nm, $A_{355 \text{ nm}} = 0.4$ in a 1-cm cuvette.

Figure S20. Comparison of the nanosecond transient differential absorption spectra of Ir-2 in CH₂Cl₂ and complex 4 in Ref. 37 in toluene at zero delay after excitation. $\lambda_{ex} = 355$ nm, $A_{355 \text{ nm}} = 0.4$ in a 1-cm cuvette.

Figure S21. (a) TA spectra of Ir-2 in CH₂Cl₂ at various delay times (noted in legend).
The sample was excited with 390 nm and a power of 0.61 mW. (b) Normalized TA kinetics of Ir-2 at 671 nm. The inset shows the kinetic fit within the first 20 ps.

Figure S22. (a) TA spectra of **Ir-3** in CH_2Cl_2 at various delay times (noted in legend). Samples were excited with 390 nm and a power of 0.38 mW. (b) TA kinetics of **Ir-3** in CH_2Cl_2 at 536 nm. There was an initial rise fit with a time constant of 1.43 ± 0.25 ps followed by a long lived component that could not be fit within the first 3 ns.

Figure S23. (a) SEC measurements of the ligand **6** in 100 mM TBAP. Anion and cation were generated using a potential of -1400 mV and 1400 mV respectively. (b) TA spectra of the ligand dissolved in CH_2Cl_2 at various delay times (noted in legend). An excitation wavelength of 390 nm and a power of 0.4 mW was used. (c) Kinetic fit of the ligand **6** spectra at 692 nm. There was an initial rise with a lifetime of 0.6 ± 0.3 ps.

Table S2. Natural transition orbitals (NTOs) representing the 3rd excited state of ligand 6.

Table S3. Emission quantum yields of Ir-1 – Ir-3 and ligand 6 in different solvents

	$\lambda_{\rm em}/{\rm nm} (\tau_{\rm em}/\mu{\rm s}); \Phi_{\rm em}$						
	CH_2Cl_2	CH ₃ CN	Toluene	Acetone			
Ir-1 ^a	606 (10.8); 0.081	611 (30.1); 0.017	642 (24.1); 0.012	612 (17.6); 0.022			
Ir-2 ^a	594 (44.5); 0.15	603 (31.7); 0.031	624 (27.5); 0.047	603 (40.0); 0.060			
Ir-3ª	609 (2.23), 640 (2.24); 0.18	627 (1.00); 0.048	596 (0.19), 654 (0.19); 0.029	628 (0.58); 0.054			
6 ^b	498 (-); 0.60	521 (-); 0.43	450 (-); 0.64	-			

^a Degassed CH₃CN solution of [Ru(bpy)₃]Cl₂ ($\Phi_{em} = 0.042$, $\lambda_{ex} = 436$ nm) was used as the reference. ^b 1 N sulfuric acid solution of quinine bisulfate ($\Phi_{em} = 0.546$, $\lambda_{ex} = 347.5$ nm) was used as the reference

Table S4. Natural transition orbitals contributing to the fluorescence transition from thelowest singlet excited state to the singlet ground state for ligand 6

Singlet energy	Electron	Hole
473 nm		