Controllable synthesis of $\mathrm{Ni} / \mathrm{SiO}_{2}$ hollow spheres and excellent catalytic performance in 4-introphenol reduction

Zhongyi Niu, Shenghuan Zhang, Yanbo Sun*, Shili Gai, Fei He, Yunlu Dai, Lei Li, and Piaoping Yang*

Table S1 Experimental conditionsfor the synthesis of SiO_{2} particles with different sizes ${ }^{a}$

$\mathrm{SiO}_{2}(\mathrm{~nm})$	$\mathrm{V}(\mathrm{TEOS})$	$\mathrm{V}\left(\mathrm{H}_{2} \mathrm{O}\right)$	$\mathrm{V}\left(\mathrm{NH}_{3}\right)$	$\mathrm{V}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$
140	14	49.8	27.9	277.2
210	14	31.4	183	119.8
350	14	28.2	164.8	106.4
580	14	4	117.8	88.2

a V: volume (mL)

Fig. S1 XRD pattern of nickel silicate.

Fig. S2 EDS spectrum of nickel silicate.

Fig. S3 XRD pattern of $\mathrm{NiO} / \mathrm{SiO}_{2}$ and the standard data of rhombohedral phased NiO .

Fig. S4 Size distribution histogram of the Ni NPs calculated from a single $\mathrm{Ni} / \mathrm{SiO}_{2}$ MHMs with the diameter of a) 230 nm , b) 320 nm , c) 450 nm and d) 800 nm .

Fig. S5 photograph for the magnetic separation of $\mathrm{Ni} / \mathrm{SiO}_{2} \mathrm{MHMs}$.

Fig. S6 TEM images of $\mathrm{Ni} / \mathrm{SiO}_{2}$ synthesized by wet impregnation (a, b) and bare Ni NPs synthesized by calcination and reduction of $\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{3}(\mathrm{c}, \mathrm{d})$.

Fig. S7 UV-vis spectra of the catalytic reduction of 4-NP to 4-AP developed at different reaction times over $\mathrm{Ni} / \mathrm{SiO}_{2}$ synthesized by wet impregnation (a) and bare Ni NPs synthesized by calcination and reduction of $\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{3}$ (b); $\mathrm{C} / \mathrm{C}_{0}$ and $\ln \left(\mathrm{C} / \mathrm{C}_{0}\right)$ versus time for the reduction of $4-\mathrm{NP}$ over $\mathrm{Ni} / \mathrm{SiO}_{2}$ synthesized by wet impregnation (c) and bare Ni NPs synthesized by calcination and reduction of $\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{3}$ (d), the ratio of 4-NP concentration (Ct at time t) to its initial value C_{0} is directly represented by the relative intensity of the respective absorption peak at 400 nm .

Table S2 The ICP data of $\mathrm{Ni} / \mathrm{SiO}_{2}$ MHMs with different size before and after catalytic reaction.

	$\mathrm{Ni}(\mu \mathrm{g} / \mathrm{mg})$	$\mathrm{Si}(\mu \mathrm{g} / \mathrm{mg})$
$230 \mathrm{~nm} \mathrm{Ni} / \mathrm{SiO}_{2}$ MHMs	14.6	24.3
$320 \mathrm{~nm} \mathrm{Ni} / \mathrm{SiO}_{2} \mathrm{MHMs}$	16.4	29.5
$450 \mathrm{~nm} \mathrm{Ni} / \mathrm{SiO}_{2}$ MHMs	13.2	27.6
$800 \mathrm{~nm} \mathrm{Ni} / \mathrm{SiO}_{2}$ MHMs	14.4	25.2
$230 \mathrm{~nm} \mathrm{Ni} / \mathrm{SiO}_{2}$ MHMs after recycling	12.4	25.6

For calculating the dispersion of $\mathrm{Ni} / \mathrm{SiO}_{2} \mathrm{HMHs}$, the equation can be formulated as follows (see Ref. S1 and S2)

The number of nickel particles $\mathrm{N}_{1}=\frac{d_{N i}}{2 \pi\left(\frac{d_{N i}}{2}\right)^{2} \rho_{N i}}$
The overall surface area of Ni particles $\mathrm{S}=2 \pi\left(\frac{d_{N i}}{2}\right)^{2} \mathrm{~N}_{1}$
Dispersion $=\overline{N_{S}} \frac{S k}{N_{T}}=\frac{n_{N i} N_{A}}{n_{2}}$
Where $\rho_{\mathrm{Ni}}=8.90 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$
$\mathrm{N}_{\mathrm{S}}=$ total number of surface nickel atoms
$\mathrm{N}_{\mathrm{T}}=$ total number of nickel atoms
The nickel atom density (k) is $1.54 \times 10^{19} \mathrm{~m}^{-2}$
$\mathrm{N}_{\mathrm{A}}=6.02 \times 10^{23} \mathrm{~mol}^{-1}$
$\mathrm{n}_{\mathrm{Au}}=\mathrm{m}_{\mathrm{Au}} / \mathrm{M}_{\mathrm{Au}}$
Therefore, the equation can be written as:
Dispersion $=\frac{10.06}{d_{N i}}=\frac{5.03}{r_{N i}}$

References

1 J. R. Anderson, Structure of Metallic Catalysts, Academic Press, 1975
2 Q. Bi, X. Du, Y. Liu, Y. Cao, H. He and K. Fan, J. Am. Chem. Soc., 2012, 134, 8926.

