A) Stability studies of the trans-[$\left.\mathrm{PtI}_{\mathbf{2}}(\mathbf{a m i n e})\left(\mathbf{P P h}_{3}\right)\right]$ in $\mathbf{D M S O}$ solution

Figure SM-A1. NMR spectra of the complex trans-[$\left.\mathrm{PtI}_{2}(\mathbf{i p a})\left(\mathrm{PPh}_{3}\right)\right]$ at \mathbf{t} : 0 and $\mathbf{2 4 h}$.

Figure SM-A2. NMR spectra of the complex trans-[$\left.\mathrm{PtI}_{2}(\mathrm{dma})\left(\mathrm{PPh}_{3}\right)\right]$ at $\mathrm{t}: \mathbf{0}$ and $\mathbf{2 4 h}$.

B) NMR studies of 9EtG and the most active complex: 1.

Experimental part of the binding studies of trans-[PtI $\mathbf{I}_{2}($ amine $\left.)\left(\mathrm{PPh}_{3}\right)\right]$ with 9-EtG:

Samples of complex 1 were prepared by mixing 0.5 mL of complex solution (2 mg) in $\mathrm{H}_{2} \mathrm{O}$:Acetone- $\mathrm{d}_{6}(1: 2)$ with $9-\mathrm{EtG}(1 \mathrm{mg})$ into a NMR tube. The temperature of the tube was maintained at $37{ }^{\circ} \mathrm{C}$ with slight stirring during the entire experiment (24 hours). ${ }^{1} \mathrm{H}$ spectra were acquired at various times to monitor the reactivity.

Figure SM-B1. NMR spectra of the complex trans-[$\left.\mathrm{PtI}_{2}(\mathbf{i p a})\left(\mathbf{P P h}_{3}\right)\right]$ at $\mathrm{t}: 0$ and its monitoring reaction with 9 EtG at $t: 2 h, 5 h$ and $24 h$.

C) Single crystal data from trans-[$\left.\mathrm{PtI}_{\mathbf{2}}(\mathbf{i p a})\left(\mathrm{PPh}_{3}\right)\right]$:

A light orange prismatic-like specimen of $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{I}_{2} \mathrm{NPPt}$, approximate dimensions 0.10 $\mathrm{mm} \times 0.19 \mathrm{~mm} \times 0.22 \mathrm{~mm}$, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured.A total of 4079 frames were collected in a Bruker Kappa Apex II difractometer using graphite-monochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation ($\lambda=0.71073 \AA$) and operating at 50 kV and 30 mA . The total exposure time was 11.33 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using a triclinic unit cell yielded a total of 51025 reflections to a maximum θ angle of 28.35° ($0.75 \AA$ resolution), of which 5847 were independent (average redundancy 8.727 , completeness $=99.1 \%, \mathrm{R}_{\text {int }}=4.00 \%, \mathrm{R}_{\text {sig }}=$ 2.28%) and $4953(84.71 \%)$ were greater than $2 \sigma\left(\mathrm{~F}^{2}\right)$. The final cell constants of $a=$ 9.5189(7) $\AA, b=10.9327(10) \AA, c=11.5197(10) \AA, \alpha=84.048(4)^{\circ}, \beta=81.976(4)^{\circ}, \gamma=$ $86.335(4)^{\circ}$, volume $=1179.20(17) \AA^{3}$, are based upon the refinement of the XYZcentroids of 9235 reflections above $20 \sigma(\mathrm{I})$ with $4.935^{\circ}<2 \theta<55.65^{\circ}$. Data were corrected for absorption effects using the multi-scan method (SADABS). The ratio of
minimum to maximum apparent transmission was 0.644 . The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.2523 and 0.4787 . The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group $\mathrm{P}-1$, with $\mathrm{Z}=2$ for the formula unit, $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{I}_{2} \mathrm{NPPt}$. The final anisotropic full-matrix least-squares refinement on F^{2} with 237 variables converged at $\mathrm{R}_{1}=2.81 \%$, for the observed data and $w \mathrm{R}_{2}=11.29 \%$ for all data. The goodness-of-fit was 1.000 . The largest peak in the final difference electron density synthesis was 1.103 e^{-} / \AA^{3} and the largest hole was $-1.964 \mathrm{e}^{-} / \AA^{3}$ with an RMS deviation of $0.414 \mathrm{e}^{-} / \AA^{3}$. On the basis of the final model, the calculated density was $2.169 \mathrm{~g} / \mathrm{cm}^{3}$ and $\mathrm{F}(000), 712 \mathrm{e}^{-}$.

Table SM-C1. Sample and crystal data for trans-[$\left.\mathbf{P t I}_{\mathbf{2}}(\mathbf{i p a})\left(\mathbf{P P h}_{3}\right)\right]$.

Chemical formula	$\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{I}_{2} \mathrm{NPPt}$	
Formula weight	770.27	
Temperature	$296(2) \mathrm{K}$	
Wavelength	$0.71073 \AA$	
Crystal size	$0.10 \times 0.19 \times 0.22 \mathrm{~mm}$	
Crystal habit	light orange prismatic	
Crystal system	triclinic	
Space group	$P-1$	$\alpha=84.048(4)^{\circ}$
Unit cell dimensions	$a=9.5189(7) \AA$	$\beta=81.976(4)^{\circ}$
	$b=10.9327(10) \AA$	$\gamma=86.335(4)^{\circ}$
	$c=11.5197(10) \AA$	
Volume	$1179.20(17) \AA \AA^{3}$	
Z	2	
Density (calculated)	$2.169{\mathrm{Mg} / \mathrm{cm}^{3}}$	
Absorption coefficient	$8.641 \mathrm{~mm}^{-1}$	
F(000)	712	

Table SM-A2. Data collection and structure refinement for trans-[$\left.\mathbf{P t I}_{2}(\mathbf{i p a})\left(\mathbf{P P h}_{3}\right)\right]$. Theta range for data collection 1.79 to 28.35°

Index ranges
Reflections collected
Independent reflections
Coverage of independent reflections
Absorption correction
Max. and min. transmission
Structure solution technique
Structure solution program
Refinement method
Refinement program
Function minimized
Data / restraints / parameters
Goodness-of-fit on $\mathbf{F}^{\mathbf{2}}$
$\Delta / \sigma_{\text {max }}$
Final R indices
$-12<=\mathrm{h}<=12,-14<=\mathrm{k}<=14,-15<=\mathrm{l}<=15$
51025
$5847[\mathrm{R}(\mathrm{int})=0.0400]$
99.1\%
multi-scan
0.4787 and 0.2523
direct methods
SHELXS-97 (Sheldrick, 2008)
Full-matrix least-squares on F^{2}
SHELXL-97 (Sheldrick, 2008)
$\Sigma \mathrm{w}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2}$
5847/0/237
1.000
0.001

4953 data;
$\mathrm{I}>2 \sigma(\mathrm{I})$

	all data $\quad \mathrm{R}_{1}=0.0394, w \mathrm{R}_{2}=0.1129$
Weighting scheme	$\mathrm{w}=1 /\left[\sigma^{2}\left(\mathrm{~F}_{\mathrm{o}}{ }^{2}\right)+(0.0827 \mathrm{P})^{2}+0.3094 \mathrm{P}\right]$
	where $\mathrm{P}=\left(\mathrm{F}_{\mathrm{o}}^{2}+2 \mathrm{~F}_{\mathrm{c}}{ }^{2}\right) / 3$
Largest diff. peak and hole	1.103 and $-1.964 \mathrm{e}^{\AA-3}$
R.M.S. deviation from mean	0.414^{-3}

