Half Sandwich Ruthenium(II) Hydrides for the Hydrogenation of Terminal, Internal, Cyclic Olefins and Olefins with Functional Groups

Bidraha Bagh and Douglas W. Stephan*

Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada M5S 3H6

Corresponding Author: dstephan@chem.utoronto.ca

Synthesis of [PhCH₂N₂(NMe)C₂(C₆H₄CF₃)][OTf]. MeOTf (1.805 g, 11.00 mmol) was added dropwise to a solution of 1,2,3-triazole [PhCH₂N₃C₂H(C₆H₄CF₃)] (3.035 g, 10.00 mmol) in CH₂Cl₂ (20 mL) at r.t. The reaction mixture was stirred for 18 h resulting in a colorless solution. All volatiles were removed under high vacuum yielding a colorless oil which solidified on standing. The solid was washed with hexane (3 x 15 mL) and dried under vacuum to give [PhCH₂N₂(NMe)C₂(C₆H₄CF₃)][OTf] (4.239 g, 91%) as pure product. ¹H NMR (CD₂Cl₂): δ 4.25 (s, 3H, N-CH₃), 5.81 (s, 2H, CH₂), 7.37-7.49 (m, 3H, C₆H₅), 7.52-7.63 (m, 2H, C₆H₅), 7.75-7.88 (m, 4H, C₆H₄), 8.78 (s, 1H, triazolium-H). ¹³C NMR (CD₂Cl₂): δ 39.27 (N-CH₃), 58.14 (CH₂), 126.00, 126.94, 129.45, 129.80, 130.03, 130.39, 130.60, 131.48, 133.65, 142.57 (Ar-C and triazolium-C). ¹⁹F NMR (CD₂Cl₂): δ -63.54, -78.96. Anal. Calcd for C₁₈H₁₅F₆N₃O₃S (467.39): C, 46.26; H, 3.23; N, 8.99. Found: C, 46.21; H, 3.25; N, 9.02.

Hydrogenation of olefins at 80 °C by 5d. In a glove box, a sample of the ruthenium-hydride complex 5d (6.5 mg, 10 μ mol), C₆D₅Br (0.5 mL) and substrate (0.2 mmol) were combined in a vial. The mixture was transferred to a J. Young tube and the J. Young tube was sealed. On a Schlenk line, the reaction mixture was degassed four times using the freeze-pump-thaw method. The sample was then frozen once more in liquid nitrogen and 4 atm of H₂ was added. The J. Young tube was sealed again and warmed to room temperature and then placed in an oil bath pre-heated to 80 °C. ¹H NMR spectra were measured at appropriate intervals and relative integration of substrate and product peaks were used to determine the composition of the mixture. The results are summarized in Table S1.

Note: Catalyst **5d** slowly decomposed at 80 °C over time (Figure S30). In C_6D_5Br the hydride resonance of **5d** was observed at -5.91 ppm. Heating a solution of **5d** in C_6D_5Br for an hour, another hydride resonance at -6.31 ppm was observed. The intensity of the second hydride resonance (-6.31 ppm) increased with time whereas the intensity of the first hydride resonance (-5.91 ppm) decreased. In 5 hours, both of the hydride resonances disappeared completely and species **5d** completely decomposed to unidentified products. As compared to the hydrogenation of olefins catalyzed by **5d** at 50 °C, the hydrogenation of 1-hexene, 2-hexene, allyl alcohol and acrylaldehyde at 80 °C was faster. Similar activity of **5d** was observed for the reduction of 3-buten-2-one both at 50 and 80 °C. At 80 °C much reduced activity was observed for rest of the substrates as compared to activity at 50 °C.

entry	substrate	product	cat	time/yield (h/%) ^b
1	H ₃ C	H ₃ C CH ₃	2a	2/100
2	Ph CH ₂	Ph CH₃	2a	3/19
	02			5/37
				24/41
3	H ₃ C CH ₃	H ₃ C ^{CH} 3	2a	2/100
4	CH3	CH3	2a	3/36
	CH ₃	CH ₃		5/50
		H_3C^{\prime}		24/55
5	Ph	Ph Ph	2a	3/15
	FII	FII ·		5/22
				24/28
6	\frown	\frown	2a	3/34
				5/51
				24/61
7		\frown	2a	3/29
				5/44
	\sim	\sim		24/55
8			2a	3/24
				5/40
				24/51
9	HO CH2	HO CH3	2a	2/100
10	OHC CH2		2a	1/100
11	H ₃ C CH ₂	H ₃ C CH ₃	2a	4/100
12			2a	8/100
	H ₃ CO [×] CH ₂	H ₃ CO ⁻ CH ₃		
13	NC CH ₂	NC CH ₃	2a	4/100
14	H ₂ N	H ₂ N CH ₃	2a	3/29
	CH ₂			5/48
				24/53
15	N	N CH	2a	3/18
	CH ₂	CH3		5/31
				24/36
16	tBuO ← CH ₂	<i>t</i> BuO ^C CH ₃	2a	3/17
				5/21
				24/31
17	PhS CH ₂	PhS CH ₃	2a	3/15
				5/20
				24/25
18	M CH ₂	N CH ₃	2a	3/21
	N=	N=		5/29
				24/32

Table S1. Hydrogenation catalysis with $5d^a$

^{*a*}Conditions: 0.10 mmol of substrate and 5 mol % of catalyst in C_6D_5Br at 80 °C under 4 atm of H₂. ^{*b*}Yields were determined by ¹H NMR spectroscopy.

Figure S1. ¹H NMR spectrum of [PhCH₂N₂(NMe)C₂(C₆H₄CF₃)][OTf] in CD₂Cl₂ at r.t.

Figure S2. ¹³C NMR spectrum of [PhCH₂N₂(NMe)C₂(C₆H₄CF₃)][OTf] in CD₂Cl₂ at r.t.

Figure S3. ¹⁹F NMR spectrum of [PhCH₂N₂(NMe)C₂(C₆H₄CF₃)][OTf] in CD₂Cl₂ at r.t.

Figure S4. ¹H NMR spectrum of **1a** in CD₂Cl₂ at r.t.

Figure S5. ¹³C NMR spectrum of 1a in CD₂Cl₂ at r.t.

Figure S6. ¹⁹F NMR spectrum of **1a** in CD₂Cl₂ at r.t.

Figure S7. ¹H NMR spectrum of **2a** in CD₂Cl₂ at r.t.

Figure S8. ¹³C NMR spectrum of 2a in CD_2Cl_2 at r.t.

Figure S9. ¹⁹F NMR spectrum of 2a in CD_2Cl_2 at r.t.

Figure S10. ¹H NMR spectrum of 2a' in CD₂Cl₂ at r.t.

Figure S11. ¹³C NMR spectrum of **2a'** in CD₂Cl₂ at r.t.

Figure S12. ¹⁹F NMR spectrum of 2a' in CD₂Cl₂ at r.t.

Figure S13. ¹H NMR spectrum of **3a** in CD₃OD at r.t. (* indicates water).

Figure S14. ¹H NMR spectrum of **4a** in CD₃CN at r.t.

Figure S15. ¹³C NMR spectrum of 4a in CD₃CN at r.t.

Figure S16. ¹⁹F NMR spectrum of 4a in CD₃CN at r.t.

Figure S17. ¹H NMR spectrum of **3b** in CD₃OD at r.t. (* indicates water).

Figure S18. ¹³C NMR spectrum of **3b** in CD₃OD at r.t.

Figure S19. ¹H NMR spectrum of 4b in CD₃CN at r.t.

Figure S20. ¹³C NMR spectrum of 4b in CD₃CN at r.t.

Figure S21. ¹⁹F NMR spectrum of **4b** in CD₃CN at r.t.

Figure S22. ¹H NMR spectrum of **5b** in CD₂Cl₂ at r.t.

Figure S23. ¹³C NMR spectrum of 5b in CD₂Cl₂ at r.t.

Figure S24. ¹H NMR spectrum of 5c in CD₂Cl₂ at r.t. (* indicated pentane).

Figure S25. ¹³C NMR spectrum of 5c in CD₂Cl₂ at r.t. (* indicated pentane).

Figure S26. ¹H NMR spectrum of 5d in CD₂Cl₂ at r.t.

Figure S27. ¹³C NMR spectrum of 5d in CD₂Cl₂ at r.t.

Figure S28. ¹H NMR spectrum of 5e in CD₂Cl₂ at r.t. (* indicates pentane).

Figure S29. ¹³C NMR spectrum of 5e in CD_2Cl_2 at r.t. (* indicates pentane).

Figure S30. Decomposition of 5d in C₆D₅Br at 80 °C over time.