Electronic Supplementary Information

Reversible photochromic switching in a Ru(II) polypyridyl complex

Duenpen Unjaroen, Johan B. Kasper and Wesley R. Browne*

Contents

Experimental section	2
Raman and FTIR spectroscopy	6
Photochemistry detected by ESI-MS	7
Preparative photochemistry	9
Photochemistry in other solvents	13

Experimental section

Instrumentation

Raman spectra were recorded and irradiations carried out at 457 nm (Cobolt Lasers 50 mW), 405 nm (Ondax 50 mW) and 355 nm (Cobolt Lasers 7 mW), in 1 cm pathlength quartz cuvettes. The excitation beam was focused at the sample using a 10 cm focal length parabolic mirror at ca. 35° with respect to the collection axis. The Raman scattering was collected and collimated with a 2.5 cm diameter, 15 mm focal length plano convex mirror, filtered to remove Rayleigh scattering using an appropriate Steep Edge long pass filter (Semrock), and focused into the spectrograph (Shamrock 303, AndorTechnology, 1800 1200 l/mm grating blazed at 500 nm), and imaged onto a Andor iDus-420-BEX2-DD CCD camera. Raman spectra at 785 nm were recorded using a Perkin Elmer Raman station. FTIR spectra were recorded on a Perkin Elmer Spectrum 2 equipped with a UATR attachment. UV/Vis absorption spectra were recorded on either a Specord S300 UV/Vis or S600 UV/Vis diode array spectrometer (AnalytikJena). Irradiation was monitored in situ using the same excitation sources as for Raman spectroscopy (*vide supra*) defocused to a 0.8 cm diameter beam incident at 90° to the monitoring beam. ¹H NMR (400.0MHz) spectra were recorded on a Varian Avance 400 NMR spectrometer. Chemical shifts are relative to CD₃CN (1.94 ppm). ESI-MS spectra were recorded on a Triple Quadrupole LC/MS/MS mass spectrometer (API 3000, Perkin-Elmer Sciex Instruments). Elemental analyses were performed with a Foss-Heraeus CHN Rapid or a EuroVector Euro EA elemental analyzer.

Synthesis

Complex **4**, [Ru(Cl)(MeN₄Py)]Cl, was prepared from 1,1-di(pyridin-2-yl)-N,N-bis(pyridin-2-ylmethyl)ethan-1amine (**MeN₄Py**) and ruthenium chloride hydrate (RuCl₃. xH₂O). RuCl₃ xH₂O (122.4 mg, 0.59 mmol), **MeN₄Py** (100.1 mg, 0.26 mmol) and L-ascorbic acid (92.4 mg, 0.52 mmol) were heated at reflux overnight in EtOH/H₂O (2:3 v/v) and then cooled to room temperature. The solvent was removed *in vacuo* and the crude product purified by column chromatography on neutral alumina, eluting with CH₃CN to yield Ru(Cl)(MeN4Py)(Cl) **4** as a red solid (107.5 mg, 74%). ¹H NMR (400 MHz, CD₃CN) δ 9.35 (d, *J* = 5.4 Hz, 2H), 9.04 (d, *J* = 5.4 Hz, 2H), 7.88 (t, *J* = 7.7 Hz, 2H), 7.65 (d, *J* = 8.0 Hz, 2H), 7.54 (t, *J* = 7.7 Hz, 2H), 7.29 (t, *J* = 6.5 Hz, 2H), 7.24 (t, *J* = 6.6 Hz, 2H), 6.99 (d, *J* = 7.8 Hz, 2H), 4.19 (s, 4H), 2.23 (s, 3H). ESI/MS: m/z 518 [M-Cl]⁺.

Complex 5, $[Ru(Cl)(MeN_4Py)](BF_4)$ was prepared by saturated aqueous NaBF₄ to a solution of **4** in water. 5 precipitated as a red solid. ¹H NMR (400 MHz, CD₃CN) δ 9.35 (d, *J* = 5.4 Hz, 2H), 9.04 (d, *J* = 5.4 Hz, 2H), 7.88 (t, *J* = 7.8 Hz, 2H), 7.64 (d, *J* = 8.0 Hz, 2H), 7.54 (t, *J* = 7.7 Hz, 2H), 7.29 (t, *J* = 6.4 Hz, 2H), 7.24 (t, *J* = 6.4 Hz, 2H), 6.98 (d, *J* = 8.0 Hz, 2H), 4.15 (q_{AB}, *J* = 18.6 Hz, 4H), 2.25 (s, 3H). ESI/MS: m/z 518 [M-BF₄]⁺.

Water (1 mL) was added to the solution of **5** (65 mg, 0.11 mmol) in CH₃CN (9 mL) and the mixture heated at 55 ^oC. The reaction was cooled to room temperature after 6 h and the solvent reduced *in vacuo*. Addition of a few drop of saturated of NaBF₄ yielded **1** as a yellow solid (69.0 mg, 92%). ¹H NMR (400 MHz, CD₃CN) δ 8.94 (d, J = 5.4 Hz, 2H), 8.84 (d, J = 5.4 Hz, 2H), 7.97 (t, J = 7.7 Hz, 2H), 7.74 (d, J = 8.0 Hz, 2H), 7.64 (t, J = 7.8 Hz, 2H), 7.37 (t, J = 6.6 Hz, 2H), 7.29 (t, J = 6.6 Hz, 2H), 7.07 (d, J = 8.0 Hz, 2H), 4.36 (s, 4H), 2.73 (s, 3H), 2.32(s, 3H). ESI/MS: m/z 262 [M-(BF₄)₂]²⁺. *Anal.* Calc. for RuC₂₆H₂₆B₂F₈N₆: C, 44.79; N, 12.06; H, 3.75. Found: C, 43.31; N, 11.75; H, 3.76%.

Scheme S1. Synthesis of [Ru(CH₃CN)(MeN₄Py)](BF₄)₂ (1).

Fig. S1. ¹H NMR spectrum of complex **4** in CD₃CN.

Fig. S2. ¹H NMR spectrum of complex **5** in CD₃CN.

Fig. S3. ¹H NMR spectrum of complex **1** in CD₃CN.

Fig. S4. ESI/MS spectrum of complex 4.

Fig. S5. ESI/MS spectrum of complex 5.

Fig. S6. ESI/MS spectrum of complex 1.

Fig. S7. UV/vis absorption spectrum of complex 1 in CH₃CN; λ 425 nm (ϵ = 8.13 × 10³ M⁻¹ cm⁻¹).

Raman and FTIR spectroscopy

The Raman spectrum at λ_{exc} 785 nm of **1** in the solid state reveals the vibrational band of CH₃CN at 2268 cm⁻¹. After evaporation of solvent of **3** in CD₃CN (generated by irradiation at 457 nm), the vibrational band of CH₃CN and CD₃CN at 2287 cm⁻¹ and 2112 cm⁻¹, respectively, are observed. Similarly, the FTIR spectrum also shows the corresponding CH₃CN band at 2260 cm⁻¹. The bands in region 1600-1200 cm⁻¹ are assigned to pyridine based vibrations by comparison with the Raman spectrum of [Fe^{II}(MeN4Py)(CH₃CN)](ClO₄)₂.ⁱ Upon irradiation at 457 nm, the bands at 1285 and 1340 cm^{-1} decrease and a band at 1297 cm^{-1} appears, the latter of which is assigned to the pyridine group not coordinated to the Ru (II) ion.

The Raman spectrum of 1 in CD₃CN (0.1 mM) was monitored at the isosbestic point (λ_{exc} 405 nm). The band at 1297 cm⁻¹ confirms the change in ligand denticity and after irradiation at 355 nm the spectrum corresponding to 1 in CD₃CN (without irradiation) is recovered (Fig. S12).

Fig. S8. (a) Raman spectrum (solid state) of **1** i) before irradiation at 457 nm ii) after irradiation at 457 mm iii) FTIR spectrum of **1** before irradiation at 457 nm iv) after irradiation at 457 nm. (b) Expansion of (a).

Photochemistry detected by ESI-MS

(1) $[Ru(CH_3CN)(MeN4Py)]^{2+}$ in CH₃CN (0.07 mM) was irradiation at λ 457 nm (18 min) to generate the corresponding complex (2) $[Ru(CH_3CN)_2(MeN4Py)]^{2+}$. The ESI-MS spectrum of 2 in CH₃CN shows signals at m/z 282. After subsequent irradiation at λ 355 nm (22 min) to form 1 and ESI-MS spectrum shows a peak at m/z 262 (Scheme S2).

Scheme S2. Photo-irradiation of (1) Ru[(CH₃CN)(MeN4Py)]²⁺ in CH₃CN; irradiation at 457 nm and 355 nm.

Fig. S9. ESI/MS spectrum of 1in CH₃CN after irradiation at 457 nm, signals correspond to complex 2.

Fig. S10. ESI/MS spectrum of complex 2 in CH₃CN after irradiation at 355 nm, signals correspond to 1.

Preparative photochemistry

1 ([Ru(CH₃CN)(MeN4Py)]²⁺, 0.07 mM)) was irradiated in CD₃CN. Irradiation at 457 nm for 20 min gave a m/z 285 corresponding to [Ru(CH₃CN)(CD₃CN)(MeN4Py)]²⁺. ¹H NMR (400 MHz, CD₃CN) δ 9.02 (d, *J* = 5.8 Hz, 1H), 8.83 (d, *J* = 5.6 Hz, 1H), 8.80 (d, *J* = 5.4 Hz, 1H), 8.75 (d, *J* = 4.4 Hz, 1H), 8.01 (t, *J* = 7.8 Hz, 1H), 7.88 (t, *J* = 7.8 Hz, 1H), 7.74, (t, *J* = 7.7 Hz, 1H), 7.64 (d, *J* = 8.0 Hz, 1H), 7.59 (m, 2H), 7.53 (d, *J* = 7.8 Hz, 1H), 7.44 (t, *J* = 6.8 Hz, 1H), 7.34 (t, *J* = 6.9 Hz, 1H), 7.26 (t, *J* = 6.6 Hz, 1H), 7.14 (d, *J* = 8.2 Hz, 1H), 6.79 (d, *J* = 7.6 Hz, 1H), 5.42 (d, *J* = 14.7 Hz, 1H), 5.21 (d, *J* = 15.0 Hz, 1H), 3.71 (d, *J* = 17.5 Hz, 1H), 3.31 (d, *J* = 17.7 Hz, 1H), 2.78 (s, 3H), 2.36 (s, 3H). Upon irradiation of **3** at 355 nm, the ESI/MS shows a peak at 262 corresponding to complex **1**.

Scheme S3. Photoirradiation of [RuCH₃CN)(MeN4Py)]²⁺ in CD3CN;irradiation at 457 nm and 355 nm.

Fig. S11 Changes in UV/vis absorption spectrum of 1 in CD₃CN; irradiation at (a) 457 nm (b) 355 nm

Fig. S12. Changes in Raman spectrum of 1 in CD₃CN i) before irradiation at 457 nm ii) after irradiation at 457 nm iii) after irradiation at 355 nm (λ_{exc} 405 nm).

Fig. S13. ¹H-NMR spectrum of 1 in CD₃CN after irradiation at 457 nm corresponding to complex 3.

Fig. S14. DQF-COSY NMR spectrum of 1 in CD₃CN after irradiation at 457 nm corresponding to complex 3.

Printing Time: 1:32:52 PM Printing Date: Tuesday, June 10, 2014

Fig. S15. ESI/MS spectrum of complex 1 in CD₃CN after irradiation at 457 nm corresponding to the complex 3.

Printing Time: 1:34:07 PM Printing Date: Tuesday, June 10, 2014

Photochemistry in other solvents

The effect of water and oxygen were examined in photoirradiation of $[Ru(CH_3CN)(MeN4Py)]^{2+}$ by addition of 1% H₂O in CH₃CN, anhydrous CH₃CN and Ar purged in CH₃CN (5 min) instead of CH₃CN as a solvent.

Fig. S17. Changes in UV/vis absorption spectrum of 1 in 1% H_2O in CH₃CN; irradiation at (a) λ 457 nm (b) λ 355 nm.

Fig. S18. Changes in UV/vis absorption spectrum of 1 in anhydrous CH₃CN; irradiation at (a) λ 457 nm (b) λ 355 nm.

Fig. S19. Changes in UV/vis absorption spectrum of **1** in Ar purged CH₃CN (5 min); irradiation at (a) λ 457 nm (b) λ 355 nm.

Fig. S20. Changes in absorbance at λ 425 nm of 1 when irradiation at 457 nm and 355 nm in (a) CH₃CN (b) 1% H₂O in CH₃CN (c) in Ar purged CH₃CN (d) anhydrous CH₃CN.

Fig. S21. Changes in UV/vis absorption spectrum of 1 in acetone; irradiation at (a) λ 457 nm (b) λ 355 nm

Fig S22. Changes in UV/vis absorption spectrum of 1 in DMSO; irradiation at (a) λ 457 nm (b) λ 355 nm.

Fig. S23. Changes in UV/vis absorption spectrum of 1 in H₂O; irradiation at (a) λ 457 nm (b) λ 355 nm.

Figure 24. Changes in UV/vis absorption spectrum of **1** in H₂O; irradiation at (a) λ 457 nm (b) λ 355 nm after addition 5% CH₃CN.

Fig. S25. Changes in UV/vis absorption spectrum of **1** in H_2O ; irradiation at (a) λ 457 nm (b) addition 5% CH₃CN followed by holding in the dark.

Fig. S26. UV/vis absorption spectrum of 1 in CH₃CN; after irradiation at λ 457 nm and then 355 nm (5 cycles).

i A. Draksharapu, Q. Li, H. Logtenberg, T. A. van den Berg, A. Meetsma, J. S. Killeen, B. L. Feringa, R. Hage, G. Roelfes and W. R. Browne, *Inorg. Chem.* 2012, **51**, 900-9013.