Supporting Information for the Manuscript:

Copper(II) Coordination Polymers: Tunable Structures and Different Activation Effect of Hydrogen Peroxide for the Degradation of Methyl Orange under Visible Light Irradiation

Lu Liu,^a Dongqing Wu,^{a,b} Bei Zhao,^a Xiao Han,^a Jie Wu,^{*a} Hongwei Hou^{*a} and Yaoting Fan^a

^aThe College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450052, P. R. China

^bState Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China

Author for correspondence: Prof. Hongwei Hou, E-mail: houhongw@zzu.edu.cn

Complex	1	2	3
Formula	$C_{32}H_{42}N_{14}O_7Cu$	$C_{32}H_{50}N_{12}O_5Cl_2Cu$	$C_{16}H_{20}N_6Cl_2Cu$
Fw	798.34	817.28	430.82
Temp(K)	293(2)	293(2)	293(2)
Wavelength(Å	0.71073	0.71073	0.71073
Crystal system	Orthorhombic	Triclinic	Monoclinic
Space group	Ibam	P-1	P2(1)/c
a (Å)	23.711(5)	7.9002(16)	13.329(3)
<i>b</i> (Å)	8.9025(18)	10.020(2)	14.147(3)
<i>c</i> (Å)	33.427(7)	13.153(3)	9.6681(19)
a(deg)	90	101.72(3)	90
β(deg)	90	93.69(3)	101.46(3)
𝒴(deg)	90	91.54(3)	90
$V(Å^3)$	7056(3)	1016.5(4)	1786.7(6)
Ζ	8	1	4
$D_c(g \cdot cm^{-3})$	1.503	1.335	1.602
μ (mm ⁻¹)	0.689	0.721	1.534
F(000)	3336	429	884
GOF on F ²	1.070	1.055	1.011
$R_{I}[I \ge 2\sigma(I)]^{a}$	0.0741	0.0664	0.0772
wR_2 (all data) ^b	0.1620	0.1679	0.1502

 Table S1. Crystal data and structure refinement details for polymers 1, 2 and 3.

 ${}^{a}R_{1} = [|F_{0}| - |F_{c}|]/|F_{0}|. \ {}^{b}wR_{2} = [w(F_{0}{}^{2} - F_{c}{}^{2})^{2}]/[w(F_{0}{}^{2})^{2}]^{1/2}.$

Complex 1							
Cu(1)-N(4)	2.047(4)	Cu(1)-O(1)	2.249(5)	Cu(1)-N(4)#1	2.047(4)		
Cu(1)-N(1)	2.032(3)	Cu(1)-N(1)#1	2.032(3)	N(1)#1-Cu(1)-N(1)	173.3(2)		
N(4)#1-Cu(1)-N(1)	91.05(14)	N(4)-Cu(1)-O(1)	103.49(11)	N(4)-Cu(1)-N(1)	90.51(14)		
N(4)#1-Cu(1)-O(1)	103.50(11)	N(4)-Cu(1)-N(4)#1	153.0(2)	N(1)#1-Cu(1)-O(1)	86.67(10)		
N(4)-Cu(1)-N(1)#1	91.05(14)	N(1)-Cu(1)-O(1)	86.67(10)	N(4)#1-Cu(1)-N(1)#1	90.51(14)		
Complex 2							
Cu(1)-N(4)	2.021(2)	Cu(1)-N(1)#1	2.009(2)	Cu(1)-N(4)#1	2.021(2)		
Cu(1)-N(1)	2.009(2)	N(4)-Cu(1)-N(1)#1	89.22(9)	N(4)-Cu(1)-N(1)	90.78(9)		
N(4)#1-Cu(1)-N(1)#1	90.78(9)	N(4)#1-Cu(1)-N(1)	89.22(9)	N(4)-Cu(1)-N(4)#1	180.00(10)		
N(1)#1-Cu(1)-N(1)	180.00(12)						
Complex 3							
Cu(1)-N(6)#1	2.023(5)	Cu(1)-N(3)	2.013(5)	Cu(1)-Cl(1)	2.3207(17)		
Cu(1)-Cl(2)	2.2550(18)	N(6)#1-Cu(1)-Cl(1)	90.63(15)	N(3)-Cu(1)-Cl(1)	91.37(15)		
N(6)#1-Cu(1)-Cl(2)	89.05(16)	N(3)-Cu(1)-Cl(2)	89.14(15)	N(6)-Cu(1)-N(3)	166.3(3)		
Cl(1)-Cu(1)-Cl(2)	179.09(7)						

Table S2. Selected bond lengths / Å and angles /° for 1 and 2^a .

^a Symmetry transformations used to generate equivalent atoms in Complex 1: #1 1-x,1-y,z; Complex 2: #1 -x,-y+1,-z; Complex 3: #1 x+1,y,z+1.

Fig. S1. Experimental (red) and simulated (black) PXRD patterns of complexes.

Fig. S2. TGA curves of complexes 1, 2, 3.

Fig.S3. UV-vis absorption of MO at different time intervals under Xe lamp irradiation: (a) with H_2O_2 ; (b) with complex 1; (c) with complex 2; (d) with complex 3; (e) with complex 1 and H_2O_2 ; (f) with complex 2 and H_2O_2 ; (g) with complex 3 and H_2O_2 .

Fig.S4. UV–vis absorption of MO at different time intervals under Xe lamp irradiation: (a) with $Cu(NO_3)_2$ and H_2O_2 ; (b) with $CuCl_2$ and H_2O_2 .

Fig.S5. Concentration changes of MO at different time intervals under Xe lamp irradiation: (a) For $Cu(NO_3)_2$ and H_2O_2 ; (b) For $CuCl_2$ and H_2O_2 .

Fig.S6. (a) UV–vis absorption of MO at different time intervals under Xe lamp irradiation with complex **2**; (b) Concentration changes of MO at different time intervals under Xe lamp irradiation for **2** and H_2O_2 .

Fig. S7. PXRD patterns of complexes before and after catalysis.