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1. Determination of detection limit:

From the concentration dependent graph (b) we can determine minimum 9.95 x 108

M concentration of Cd?*, using 1uM of BPQ.
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Figure S1: (a) Emission spectra of BPQ (1 uM) upon incremental addition of Cd** (0 to 2.0 uM) in

CH;CN/H,0 (2/3, v/v) solution. (b) Emission of BPQ at 550 nm depending on the concentration of

Cd?". hex =430 nm.

2. Determination of Association Constant (K,):
By UV-vis method:
Association constant was calculated according to the Benesi-Hildebrand equation. K, was
calculated following the equation stated below.

1/ (A'Ao) = 1/ {K(Amax_Ao) [MX+]H} + 1/ [Amax'Ao]

Here A, is the absorbance of receptor in the absence of guest, A is the absorbance recorded in
the presence of added guest, A, is absorbance in presence of added [M*"]..x and K|, is the
association constant, where [MX'] is [Cd?']. The association constant (K,) could be
determined from the slope of the straight line of the plot of 1/(A-A,) against 1/[Cd*'] and is
found to be 7.82 x 10* M1,
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Figure S2: Benesi-Hildebrand plot from absorption titration data of receptor (10 uM) with Cd?*.
By fluorescence method:

The binding constant value of Cd?" with receptor has been determined from the emission
intensity data following the modified Benesi—Hildebrand equation, 1/A1 = 1/Alyax
+H(1/K,[C])(1/Alyay). Here Al = I-Ii, and Alyax = Imax—Imin, Where I, I, and I, are the
emission intensities of receptor considered in the absence of Cd**, at an intermediate Cd>*
concentration, and at a concentration of complete saturation where K is the binding constant
and [C] is the Cd*'concentration respectively. From the plot of [1 / (I-I,,;,)] against [C]"!' for
receptor, the value of K has been determined from the slope. The association constant (K,) as
determined by fluorescence titration method for the receptor with Cd>" is found to be 1.55 x

105 ML
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Figure S3: Benesi—Hildebrand plot from fluorescence titration data of receptor (10 uM) with Cd?".




3. Linear responsive curve of BPQ depending on Cd?* concentration:
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Figure S4: The linear response curve of (a) absorbance ratio (A4s0/Az07) and (b) emission intensity at
550 nm of BPQ depending on the Cd** concentration.

4. General procedure for drawing Job’s plot by fluorescence method:

Stock solution of same concentration of sensor and Cd?>" was prepared in the order of 10 uM in
[CH3CN/ H,0, 2/3, v/v] (at 25 °C) at pH 7.3 in HEPES buffer. The emission spectrum in each case
with different host—guest ratio but equal in volume was recorded. Job’s plots were drawn by plotting
AL X5t VS Xnost (Al = change of intensity of the emission spectrum at 550 nm during titration and Xj

is the mole fraction of the host in each case, respectively).
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Figure S5: Job’s plot diagram of receptor for Cd>" (where X, is the mole fraction of the host and Al

indicates the change of emission intensity at 550 nm).

5. Competition study
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Figure S6: Competition study using (a) UV-vis and (b) Fluorescence method, after addition of
different analytes (30 uM) in the solution of BPQ (10 uM) in presence of Cd?* (20 uM).
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Figure S7: Fluorescence titration spectra of BPQ-Cd?" (10 uM) upon increasing concentration of S
(0 to 10 equivalents). A, =430 nm.



6. Determination of fluorescence Quantum Yields (®) of BPQ and its complex

with Cd?** ion:
For measurement of the quantum yields of BPQ and its complex with Cd?*, we recorded the
absorbance of the compounds in methanol solution. The emission spectra were recorded
using the maximal excitation wavelengths, and the integrated areas of the fluorescence-
corrected spectra were measured. The quantum yields were then calculated by comparison
comparison with fluorescein (@s = 0.97 in basic ethanol) as reference using the following

equation:

Ix As nx\,
— | x |— | x |—
oeos (1) (3" (i)
Where, x & s indicate the unknown and standard solution respectively, @ is the quantum

yield, / is the integrated area under the fluorescence spectra, A is the absorbance and # is the

refractive index of the solvent.

We calculated the quantum yield of BPQ and BPQ-Cd?" using the above equation and the

value is 0.02 and 0.46 respectively.

7. pH dependent study:
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Figure S8: Fluorescence response of BPQ at 550 nm (10 uM) as a function of pH in CH;CN/ H,O (2/
3, v/v), pH is adjusted by using aqueous solutions of 1 M HCI or 1 M NaOH.



8. Computational method

Full geometry optimizations were carried out using the density functional theory (DFT)
method at the B3LYP [1-3] level for the compounds. All elements except cadmium were
assigned 6-31+G(d) basis set. The LANL2DZ basis set with effective core potential (ECP)
set of Hay and Wadt [4] was used for Cd. The vibrational frequency calculations were
performed to ensure that the optimized geometries represent the local minima and there were
only positive eigen values. Vertical electronic excitations based on B3LYP optimized
geometries were computed using the time-dependent density functional theory (TDDFT)
formalism [5-7] in methanol using conductor-like polarizable continuum model (CPCM) [8-
10]. All calculations were performed with Gaussian09 program package [11] with the aid of

the GaussView visualization program.
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Figure S9: Contour plot of selected molecular orbitals of BPQ
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Figure S10: Contour plot of selected molecular orbitals of BPQ-Cd?*

Table S1. Vertical electronic excitations of BPQ and BPQ-Cd*" calculated by
TDDFT/B3LYP/CPCM method

Compound Excitation Excitation Oscillator Aexpt, (NM)

wavelength (nm)  strength (au)

BPQ HOMO—LUMO 357 0.3905 364
HOMO-1-LUMO+1 311 0.1635
HOMO-2—LUMO 308 0.2640

BPQ-Cd** HOMO—LUMO 442 0.1184 460
HOMO—LUMO+2 363 0.1021
HOMO-1-LUMO 328 0.1252

9. Live-cell imaging:

Cell experiments were done using pretreated Cd>" with the cells and pictures were acquired
after screening several slides and performing the experiments in triplicate. The objective of
this experiment is to show that even a minute quantity of Cd>** can be efficiently detected by
the probe. No one would expect that the live cells will have the probe, but it is possible that
live cells will have Cd?*" due to environmental pollution or toxic chemicals. That is why the
cells are first treated with Cd** to mimic the situation and probe is used to detect Cd** which
penetrated into the cells. The nuclear stain DAPI helps to detect the Cd** treated cells under
dark field where no other fluorescence was detected. But as the cells were treated with probe,

Cd?*-probe complex emitted bright green fluorescence as shown in Fig. 6b.

However here we have treated cells first with the BPQ and then Cd*" was added to the cells.

The pictures were given below.



Figure S11: Confocal microscopic images of probe in RAW 264.7 cells pre-treated with BPQ: (a)
BPQ treatment only at 1 uM concentration, nuclei counterstained with DAPI (1 pg/ml), (b) treatment
a followed by CdCl, at concentration 20 puM, (c) bright field image of the cells after treatment (d)

overlay image in dark field. All images were acquired with a 40x objective lens.

10. "TH NMR spectrum of BPQ
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Figure S12: '"H NMR (400 MHz) spectrum of BPQ in CDCl;.

I p— o
223 E: gias 838 84 533098888 8 g3
::: @ Py L rR\r‘\:‘gl]h/h/}k I r-\7

f |
,‘.
1
I H i e e
8.0 8.9 8.8 8.7 8.6 8.5 8.4 8.3 8.2 8.1 8.0 7.9 7.8 7.7 7.6 7.5 7.4 . . . *
B o el e B s =
. 1 .
Figure S13: 'H NMR (expansion) spectrum of BPQ.
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Figure S14: 3C NMR (100 MHz) spectrum of BPQ in CDCl;.
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Figure S15: 3C NMR (expansion) spectrum of BPQ.

12. Mass spectrum (HRMS) of BPQ
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Figure S16: HRMS of BPQ.

13. "H NMR titration of BPQ with Cd**
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Figure S17: '"H NMR (400 MHz) spectra of (a) BPQ (Conc. = 7.2 x 103 M), (b) [BPQ + CdCl, (3.6 x
103 M)], (c) [BPQ + CdCl, (7.2 x 103 M)] and (d) [BPQ + CdCl, (1.4 x 102 M)] in d* DMSO
containing 1% D,0.



14. IR spectra of BPQ and its Cd**complexes
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Figure S18: FT IR spectra of (a) BPQ and its complex with Cd?* and (b) same in expansion mode.

14. ESI-MS spectrum of Cd** complex of BPQ
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Figure S19: HRMS of BPQ+Cd?*
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