Cyclic Trinuclear Copper(I), Silver(I), and Gold(I) Complexes: A Theoretical Insight.

Giovanni F. Caramori, ^{*a,e} Rafael M. Piccoli, ^a Maximiliano Segala, ^b Alvaro Muñoz-Castro, ^c Raul Guajardo-Maturana, ^d Diego M. Andrada, ^e and Gernot Frenking^e

^aDepartamento de Química, Universidade Federal de Santa Catarina, CP 476, Florianópolis, SC, 88040-900, Brazil. ^bInstituto de Química, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, RS, Brazil. ^cDireccion de Postgrado e Investigacion, Sede Providencia, Universidad Autonoma de Chile, Carlos Antunez 1920, Santiago, Chile. ^dDepartamento de Ciências Químicas, Universidad Andres Bello, Republica 275, Santiago, Chile. ^eFachbereich Chemie, Philipps-Universität-Marburg, Hans-Meerwein-Strasse, D-35032, Marburg, Germany.

Supporting Information

Figure S1. Optimized structures of model complexes **1-8** at the BP86-D3/def2-TZVP level of theory. Values in parentheses depict experimental data available.^{3,19,21,23,24} Color code (M = orange, C = gray, N = blue, O = red, F = green, H = white).

Figure S2. ACID plots for complexes 1a-6c.

Figure S3. Contours of deformation densities (contour value 0.003), $\Delta \rho_i(r)$, describing the density inflow (blue) and outflow (red) between the interacting fragments **1c** and their corresponding energy ΔE_i^{orb} (kcal.mol⁻¹)

СТС	bond	bond order (b_{AB}^{Wa})	atom	atomic charge
		(CAB)		(4)
1 a	Cu-N	0.298	Cu	0.722
	Cu-Cu	0.017	N	-0.463
1b	Ag-N	0.340	Ag	0.594
	Ag-Ag	0.015	N	-0.396
1c	Au-N	0.455	Au	0.458
	Au-Au	0.013	N	-0.357
7c	Au-N	0.447	Au	0.465
	Au-Au	0.017	Ν	-0.344
8c	Au-N	0.457	Au	0.438
	Au-Au	0.016	N	-0.366
2a	Cu-N	0.292	Cu	0.844
	Cu–O	0.133	0	-0.386
	Cu-Cu	0.026	Ν	-0.333
2b	Ag-N	0.266	Ag	0.817
	Ag-O	0.100	0	-0.334
	Ag-Ag	0.009	N	-0.281
2c	Au-N	0.548	Au	0.633
	Au–O	0.200	0	-0.316
	Au-Au	0.036	N	-0.227
4a	Cu-N	0.268	Cu	0.800
	Cu-Cu	0.022	N	-0.377
4b	Ag-N	0.282	Ag	0.689
	Ag-Ag	0.017	N	-0.306
4c	Au-N	0.438	Au	0.540
	Au-Au	0.019	N	-0.274

Table S1. Bond orders and natural atomic charges obtained by NBO for some selected systems.

СТС	donor (occup.)	Acceptor (occup.)	ΔE^2	$\varepsilon_i - \varepsilon_j$
		$L \rightarrow M$ donation		
1 a	$n_{sp^{2.73}}N(1.79)$	σ^*Cu-N (0.20)	59.1	0.42
1b	$n_{sp^{2.73}}N(1.75)$	$\sigma^* Ag - N(0.20)$	70.6	0.37
1c	$n_{cm^{2.73}}N(1.70)$	$\sigma^* Au - N(0.33)$	137.7	0.40
7c	$n_{m^273}N(1.68)$	$\sigma^* Au - N(0.33)$	124.6	0.42
8c	$n_{sp^{2.73}}N(1.68)$	$\sigma^*Au - N(0.33)$	127.2	0.41
	sp			
2a	$n_{sp1.15}O(1.92)$	s Cu (0.24)	25.6	0.62
	$n_{sp1.30}N(1.83)$	s Cu (0.24)	45.4	0.46
2 b	$n_{cp1,11}O(1.94)$	s Ag (0.24)	11.9	0.60
	$n_{en1,23}N(1.84)$	s Ag (0.24)	35.3	0.43
2c	$n_{sp1.11}O(1.87)$	$\sigma^* Au - N (0.16)$	40.0	0.66
	spinie			
4a	$n_{sp^{2.02}}N(1.98)$	s Cu (0.30)	51.0	0.40
4b	$n_{ap2.02}N(1.98)$	s Ag (0.35)	47.6	0.38
4c	$n_{gp2.02}$ N (1.69)	s Au (0.59)	130.3	0.33
	<i>sp=</i> 2	$M \rightarrow L$ back-donation		
1 a	$d_{r_7}Cu(2.00)$	$\sigma^*N-N(0.05)$	1.30	0.50
	$d_{vz}Cu$ (2.00)	$\pi^*N-C(0.55)$	2.77	0.18
1b	$d_{xz}Ag(2.00)$	$\sigma^*N-N(0.05)$	0.98	0.56
	$d_{yz}Ag(2.00)$	$\pi^*N-C(0.54)$	1.67	0.23
1c	$d_{xz}Au$ (2.00)	$\sigma^*N-N(0.05)$	2.50	0.54
	$d_{yz}Au$ (2.00)	$\pi^*N-C(0.54)$	4.32	0.22
7c	$d_{xz}Au$ (2.00)	σ^*N-N (0.05)	2.13	0.54
	$d_{yz}Au$ (2.00)	π^*N-C (0.56)	4.14	0.22
8c	$d_{xz}Au$ (2.00)	σ^*N-N (0.04)	2.50	0.54
	$d_{yz}Au$ (2.00)	π^*N-C (0.60)	4.05	0.22
20	$d_{\rm Cu}(2.00)$	$\sigma^* \mathbf{N} = O(0.00)$	2.28	0.20
2a 2b	$d_{Xz} Cu (2.00)$	$\sigma^* N = O(0.09)$	2.30	0.30
20	$d_{xz}Ag(2.00)$	$\sigma^* N = C(0.37)$	1.03	0.37
20	$d_{yz}Au(2.00)$	$\pi^* N = O(0.11)$	2.06	0.23
	u _{xz} nu (2.00)	0 11-0 (0.11)	2.00	0.51
4 a	$d_{vz}Cu$ (2.00)	π^*N-C (0.36)	2.42	0.18
4b	$d_{yz}Ag(2.00)$	$\pi^*N-C(0.35)$	1.20	0.22
4c	$d_{xz}Au$ (2.00)	σ^*N-N (0.05)	2.09	0.54
	$d_{yz}Au$ (2.00)	$\pi^*N-C(0.37)$	3.93	0.21

Table S2. Second order stabilization energies, ΔE^2 (kcal.mo^{l-1})difference of energy, $\epsilon_i - \epsilon_j$ (a.u.) from NBO analysis for some selected systems.