Electronic Supplementary Information (ESI) For

A Nanosized {Zn₂Ru₃} Coordination Cage Templated by Various

Polyoxometalates

Lei Wang, ^a Jun-Feng Liu, ^{a,b} Weiting Yang, ^a Fei-Yan Yi, ^a Song Dang, ^a and Zhong-Ming Sun*^a

 ^aState Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P.R. China.
^bUniversity of Chinese Academy of Sciences, Beijing 100049, P. R. China.
E-mail: szm@ciac.ac.cn

Contents

- **1. Experimental Section**
- 1.1 Materials and methods
- **1.2 Synthesis**
- **1.3 Catalytic Studies**
- **1.4 Structure Determinations**
- 2. The Structural Views of Four Compounds
- 3. Characterization Section
- 3.1 The PXRD analysis
- 3.2 The IR spectrum
- 3.3 The EDS analysis
- 3.4 TG-DTA analysis

1. Experimental Section

1.1 Materials and methods

All chemicals used during this investigation were reagent grade and used as received. The synthesis of *m*-H₂L_{Ru} was according to our reported method.¹ The POMs (H₄PVMo₁₁O₄₀ and H₅PV₂Mo₁₀O₄₀) was synthesized according to reported method.² Elemental analyses of C, H and N was carried out with a VarioEL analyzer. X-ray powder diffraction (XRD) data were collected on a Siemens D5005 diffractometer with Cu *K* α radiation ($\lambda = 1.5418$ Å). Thermogravimetric analysis (TGA) was carried out on a Thermal Analysis Instrument (SDT 2960, TA Instruments, New Castle, DE) from room temperature in air atmosphere with a heating rate of 10 °C/min. The infrared (IR) spectrum was measured within the 650-4000 cm⁻¹ region on a Nicolet iS10 spectrometer with ITR mode. The EDS spectrums were collected by the Bruker AXS XFlash detector 4010 associated in the FE-SEM (Hitachi S4800) at an accelerating voltage and current of 20 kV and 15 μ A. Gas chromatographic (GC) analyses were performed using a GC7900P (techcomp Limited, Shanghai, China) equipped with a flame ionization detector (FID) and an SPB-5 column (length = 30 m, inner diameter = 0.25 mm, and film thickness = 0.25 µm). Inlet and detector temperatures were set constant at 180 °C. *n*-Dodecane was used as an internal standard to calculate reaction conversions.

1.2 Synthesis

For compound SiW-1, a solid mixture of $Zn(OAc)_2 \cdot 4H_2O$ (10 mg, 0.02 mmol), *m*-H₂L_{Ru} (2.5 mg, 0.003 mmol) and H₄SiW₁₂O₄₀ · xH₂O (28 mg, 0.01 mmol) was dissolved in a vial containing 2.5 ml DMF and HAc (60 µL). The mixture was allowed to stand in a capped vial at 358 K for 6 d. Red block crystals of **SiW-1** were washed with DMF and air under air. CHN analysis calcd (%) for **SiW-1**: C 26.07, H 2.37, N 6.67; found: C 26.64, H 2.22, N 6.72. IR (cm⁻¹): 3478 (w), 1645 (s), 1604 (m), 1542 (w), 1463 (w), 1442 (w), 1355 (s), 1205 (w), 1091 (m), 1012(m), 968 (s), 916 (s), 781 (s), 754(s), 657 (w).

For compound PVM-2, a solid mixture of $Zn(OAc)_2 \cdot 4H_2O$ (10 mg, 0.02 mmol), *m*-H₂L_{Ru} (2.5 mg, 0.003 mmol) and H₄PVMo₁₁O₄₀ (28 mg, 0.01 mmol) was dissolved in a vial containing 2.5 ml DMF and HAc (60 µL). The mixture was allowed to stand in a capped vial at 358 K for 6 d. Red block crystals of PVM-2 were washed with DMF and air under air. CHN analysis calcd (%) for PVM-2: C 32.86, H 3.14, N 8.61; found: C 32.92, H 2.97, N 8.73. IR (cm⁻¹): 3402 (w), 1649 (s), 1541 (w), 1444 (m), 1355 (s), 1224 (m), 1057 (s), 934(s), 856 (m), 778 (s), 744 (s), 707(w), 559 (w).

For compound PV₂M-3, a solid mixture of $Zn(OAc)_2 \cdot 4H_2O$ (10 mg, 0.02 mmol), *m*-H₂L_{Ru} (2.5 mg, 0.003 mmol) and H₅PV₂Mo₁₀O₄₀ (28 mg, 0.01 mmol) was dissolved in a vial containing 2.5 ml DMF and HAc (60 µL). The mixture was allowed to stand in a capped vial at 358 K for 6 d. Red block crystals of PV₂M-3 were washed with DMF and air under air. CHN analysis calcd (%) for PV₂M-3: C 32.66, H 2.96, N 8.36; found: C 33.17, H 2.86, N 8.27. IR (cm⁻¹): 3467 (w), 1653 (s), 1599 (m), 1543 (w), 1444 (m), 1353 (s), 1218 (m), 1093 (w), 1054 (m), 966 (w), 916 (s), 876 (w), 788(s), 752 (s), 704 (w), 604 (w).

For compound PM-4, a solid mixture of Zn(OAc)₂·4H₂O (10 mg, 0.02 mmol), *m*-H₂L_{Ru} (2.5 mg,

0.003 mmol) and $H_7PMo_{12}O_{40} \cdot xH_2O$ (28 mg, 0.01 mmol) was dissolved in a vial containing 2.5 ml DMF and HAc (60 µL). The mixture was allowed to stand in a capped vial at 358 K for 6 d. Red block crystals of **PM-4** were washed with DMF and air under air. CHN analysis calcd (%) for **PM-4**: C 32.02, H 2.91, N 8.20; found: C 32.64, H 3.12, N 8.39. IR (cm⁻¹): 3458 (w), 1639 (m), 1638 (s), 1543 (m), 1492 (w), 1350 (s), 1223 (m), 1068 (m), 932 (s), 811 (w), 763 (s), 729 (w), 704 (w), 678 (m).

1.3 Catalytic Studies

The hybrids **SiW-1**, **PVM-2**, **PV₂M-3** and **PM-4** were used as solid catalysts for the cyanosilylation of trimethylsilyl cyanide (TMSCN) with aldehydes. In a typical experiment, a predetermined amount of hybrids was added to the glass tube containing a solution of aldehydes (0.44 mmol) and TMSCN (0.53 mmol) and *n*-Dodecane (0.1 mmol) as an internal standard in CH₃CN (0.2 ml). The reaction was initiated by the addition of hybrids (0.5 - 0.7 mmol‰). The reaction conversion was monitored by withdrawing aliquots from the reaction mixture at different time intervals, analyzing by GC with reference to *n*-Dodecane, and further confirming product identity by GC. After the catalysis reaction, the remaining solids were collected by centrifuge at 4000 r/min, washed with CH₃CN for three times and air under air for the further examinations.

Entry	Catalyst	Product	Conversion (%) ^a	Yield (%) ^b
1	TBA4SiW12O40	CN (3a)	none	none
2	H ₄ SiW ₁₂ O ₄₀	3a	>99	94
3	H ₄ PVM0 ₁₁ O ₄₀	3a	>99	93
4	$H_5PV_2Mo_{10}O_{40}$	3a	>99	94
5	H7PM012O40	3a	>99	92
6	$m-H_2L_{Ru}$	3a	>99	94
7	TBA ₄ SiW ₁₂ O ₄₀	CN (3b)	none	none
8	H ₄ SiW ₁₂ O ₄₀	3b	>99	94
9	H ₄ PVM0 ₁₁ O ₄₀	3b	98	93
10	H ₅ PV ₂ Mo ₁₀ O ₄₀	3b	97	92
11	H7PM012O40	3b	97	91
12	<i>m</i> -H ₂ L _{Ru}	3b	99	94
13	TBA4SiW12O40	NC OTMS (3c)	none	none
14	$H_4SiW_{12}O_{40}$	3c	98	92
15	H ₄ PVMo ₁₁ O ₄₀	3c	98	93
16	$H_5PV_2Mo_{10}O_{40}$	3c	98	91
17	H7PM012O40	3c	99	93
18	$m-H_2L_{Ru}$	3c	98	92

Table S1 Cyanosilylation of TMSCN with various aldehydes by precursor

^a GC conversion based on aldehydes. ^b GC yield averaged by two parallel experiments.

Reaction conditions: aldehydes (0.44 mmol), TMSCN (0.53 mmol), *n*-Dodecane (0.1 mmol), 2 wt% catalysts (2.0 mg), 298 K and 2 min.

Scheme 1. Possible mechanism for the cyanosilylation reaction.

1.4 Structure Determinations

Suitable single crystals of compounds SiW-1, PVM-2, PV₂M-3 and PM-4 were selected for single-crystal X-ray diffraction analysis. The data were collected on a Bruker AXS SMART APEX II diffractometer in the range of 2.15 to 27.48 ° at the temperature of 293(2) K for SiW-1 and 1.30 to 26.05 ° at the temperature of 273(2) K for PVM-2 by using graphite-monochromated Mo-K α radiation ($\lambda = 0.71073$ Å), respectively. The data of PV₂M-3 and PM-4 were collected on a Bruker Saturn70 diffractometer in the range of 3.73 to 59.67 ° at the temperature of 293(2) K and 3.73 to 74.46 ° at the temperature of 293(2) K by using graphite-monochromated Cu-K α radiation ($\lambda = 1.54178$ Å), respectively. Data processing was accomplished with the SAINT processing program.³ A total of 61140 reflections were collected, of which 6120 reflections were unique for SiW-1. A total of 42000 reflections were collected, of which 5167 reflections were unique for PVM-2. A total of 12642 reflections were collected, of which 3842 reflections were unique for PV_2M-3 . A total of 18661 reflections were collected, of which 5298 reflections were unique for PM-4. All the structures were solved by direct method and refined by full matrix leastsquares technique with the SHELXTL 97 crystallographic software package.⁴ All non-H atoms of frameworks were located from a difference Fourier map and refined anisotropically. All the H atoms of $m-H_2L_{Ru}$ ligands were also added geometrically. The remained solvent molecules (DMF and H₂O) were disordered and could not be modeled properly, the program SQUEEZE⁵ was used to calculate the solvent disorder area and remove its contribution to the overall intensity data. The amount of the disorder DMF and H₂O have been determined by the TG-DTA and CHN. For SiW-1, PVM-2, PV₂M-3 and PM-4, they contain 9DMF, 11DMF, 9DMF and 9DMF, respectively. All of the crystal data and structure refinement details for all compounds are given in Table S3-4.

Table S3 The crystal data and structure refinement details for SiW-1, PVM-2, PV2M-3 and PM-4

Name	SiW-1	PVM-2	PV ₂ M-3	PM-4
Empirical	C96H66N18O58Ru3SiW1	C96H66Mo11N18O58PRu3	C96H66Mo10N18O58PRu3	C96H66Mo12N18O58PRu
formula	2Zn2(C3H7NO)9	VZn2(C3H7NO)11	V2Zn2(C3H7NO)9	3Zn2(C3H7NO)9
Formula	5724.71	4794.31	4601.24	4695.16
weight				
Temperat	293(2) K	273(2) K	293(2) K	293(2) K
ure				
Wave	0.71073 Å	0.71073 Å	1.54178 Å	1.54178 Å
length				
Crystal	Trigonal,	Trigonal,	Trigonal,	Trigonal,
Space	<i>R</i> -3c	<i>R</i> -3c	<i>R</i> -3c	<i>R</i> -3c
group	22 71 47(0) 8	22 5925(10)	22 (050(4) }	22 (000/2) 8
	a = 23.7147(6) A b = 23.7147(6) Å	a = 23.5835(10) A b = 23.5835(10) Å	a = 23.6950(4) A b = 23.6950(4) Å	a = 23.6889(3) A b = 23.6889(3) Å
Unit cell	c = 49.252(2) Å	c = 48.792(4) Å	c = 48.6610(10) Å	c = 48.7070(9) Å
dimensio	$\alpha = 90^{\circ}$	$\alpha = 90^{\circ}$	$\alpha = 90^{\circ}$	$\alpha = 90^{\circ}$
ns	$\beta = 90^{\circ}$ $\gamma = 120^{\circ}$			
Volume	23987.6(15) Å ³	23501(2) Å ³	23660.6(7) Å ³	23670.7(6) Å ³
Ζ,	6. 2.105 Mg/m ³	6. 1.683 Mg/m ³	$6 \pm 1.653 \text{ Mg/m}^3$	$6 1 690 \text{ Mg/m}^3$
calculated	o, 2.100 mg/m	o, 1.000 htg/m	o, 11000 111 <u>0</u> 111	o, 11090 111g 111
density Absorptio	0.242	1.574	10.594	10.000
n	9.243 mm ⁻¹	1.5/4 mm ⁻¹	10.584 mm ⁻¹	10.889 mm ⁻¹
coefficien				
r F(000)	13956	11544	11430	11658
Theta	2.15 to 27.49 °	1.30 to 26.05 °	3.73 to 59.67 °	3.73 to 74.46
range for				
collection				
Limiting	-30≤h≤30,-30≤k≤30,-	-29≤h≤25,-29≤k≤26,-	-25≤h≤11,-20≤k≤15,-	-25≤h≤22,-27≤k≤28,-
indices	62 <i>≤l≤</i> 60	60≤ <i>l</i> ≤59	52 <i>≤l</i> ≤53	60 <i>≤l</i> ≤51
Reflectio	61140 / 6120	42000 / 5167	12642 / 3842	18661 / 5298
ns collected/	[R(int) = 0.0730]	[R(int) = 0.1000]	[R(int) = 0.0558]	[R(int) = 0.0269]
unique				
Complete ness	99.8 %	100.0 %	99.0 %	98.2 %
Refineme	Full-matrix least-squares	Full-matrix least-squares on	Full-matrix least-squares on	Full-matrix least-squares
nt method	on F^2	F^2	F^2	on F^2
Data /	6120 / 0 / 288	5167 / 0 / 289	3842 / 0 / 290	5298 / 0 / 288
restraints				
parameter				
S Cost da				
Goodness	1.139	0.946	1.081	1.043
F^2				
Final R	$R_1 = 0.0740,$	$R_1 = 0.0568,$	$R_1 = 0.0497,$	$R_1 = 0.0515,$
[<i>I</i> >2sigm	$wR_2 = 0.1768$	$wR_2 = 0.1525$	$wR_2 = 0.1215$	$wR_2 = 0.1322$
a(I)]				
<i>R</i> indices (all data)	$R_1 = 0.0790,$	$R_1 = 0.0948,$	$R_1 = 0.0593,$	$R_1 = 0.0555,$
()	$wR_2 = 0.1805$	$wR_2 = 0.1682$	$wR_2 = 0.1260$	$wR_2 = 0.1354$

Extinctio n	0.000025(3)	0.000076(9)	none	0.0000046(8)
t Largest diff. peak and hole	3.564 and -1.708 e. Å ⁻³	0.855 and -1.753 e. Å ⁻³	0.571 and -0.663 e. Å ⁻³	0.725 and -1.207 e. Å $^{-3}$

 $R_1 = \sum ||F_0| - |F_c|| / \sum |F_0|, wR_2 = \{\sum [w(F_0^2 - F_c^2)^2] / \sum [w(F_0^2)^2] \}^{1/2}.$

Table S4 Selected bond and angle for SiW-1, PVM-2, PV_2M -3 and PM-4

Zn(1)-O(1W)	1.92(2)	Zn(1)-O(1)#1	1.941(13)
Zn(1)-O(1)	1.941(13)	Zn(1)-O(1)#2	1.941(13)
Ru(1)-N(3)#3	2.042(12)	Ru(1)-N(3)	2.042(12)
Ru(1)-N(1)#3	2.072(14)	Ru(1)-N(1)	2.072(14)
Ru(1)-N(2)#3	2.080(13)	Ru(1)-N(2)	2.080(13)
O(1W)-Zn(1)-O(1)#1	115.6(4)	O(1W)-Zn(1)-O(1)#2	115.6(4)
O(1W)-Zn(1)-O(1)	115.6(4)	O(1)#1-Zn(1)-O(1)#2	102.7(5)
O(1)#1-Zn(1)-O(1)	102.7(5)	O(1)-Zn(1)-O(1)#2	102.7(5)

Symmetry transformations used to generate equivalent atoms: #1 -y+2,x-y+2,z; #2 -x+y,-x+2,z; #3 y-2/3,x+2/3,-z+1/6

Zn(1)-O(2)	1.941(6)	Zn(1)-O(2)#1	1.941(6)
Zn(1)-O(2)#2	1.941(6)	Zn(1)-O(1W)	1.980(11)
Ru(1)-N(2)#3	2.052(7)	Ru(1)-N(1)#3	2.055(6)
Ru(1)-N(2)	2.052(7)	Ru(1)-N(3)#3	2.072(7)
Ru(1)-N(1)	2.055(6)	Ru(1)-N(3)	2.072(7)
O(2)-Zn(1)-O(2)#1	100.7(2)	O(2)-Zn(1)-O(1W)	117.21(19)
O(2)-Zn(1)-O(2)#2	100.7(2)	O(2)#1-Zn(1)-O(1W)	117.21(19)
O(2)#1-Zn(1)-O(2)#2	100.7(2)	O(2)#2-Zn(1)-O(1W)	117.21(19)

Symmetry transformations used to generate equivalent atoms: #1 -x+y+1,-x+2,z; #2 -y+2,x-y+1,z; #3 y,x,-z+3/2

Zn(1)-O(1W)	1.951(10)	Zn(1)-O(1)#1	1.963(6)
Zn(1)-O(1)	1.963(6)	Zn(1)-O(1)#2	1.963(6)
Ru(1)-N(1)	2.059(6)	Ru(1)-N(3)#3	2.065(7)
Ru(1)-N(1)#3	2.059(6)	Ru(1)-N(2)	2.068(7)
Ru(1)-N(3)	2.066(7)	Ru(1)-N(2)#3	2.068(7)
O(1W)-Zn(1)-O(1)#1	114.91(16)	O(1)#1-Zn(1)-O(1)	103.52(19)
O(1W)-Zn(1)-O(1)	114.91(16)	O(1)#1-Zn(1)-O(1)#2	103.52(19)
O(1W)-Zn(1)-O(1)#2	114.91(16)	O(1)-Zn(1)-O(1)#2	103.52(19)

Symmetry transformations used to generate equivalent atoms: #1 -x+y+1,-x+1,z; #2 -y+1,x-y,z; #3 y+1/3,x-1/3,-z+1/6

Zn(1)-O(1)	1.948(6)	Zn(1)-O(1)#6	1.948(5)
Zn(1)-O(1)#7	1.948(5)	Zn(1)-O(1W)	1.951(9)
Ru(1)-N(1)#1	2.052(6)	Ru(1)-N(1)	2.052(6)
Ru(1)-N(3)	2.054(6)	Ru(1)-N(3)#1	2.054(6)
Ru(1)-N(2)	2.071(6)	Ru(1)-N(2)#1	2.071(6)

O(1)-Zn(1)-O(1)#6	103.5(2)	O(1)-Zn(1)-O(1W)	114.93(17)
O(1)-Zn(1)-O(1)#7	103.5(2)	O(1)#6-Zn(1)-O(1W)	114.93(17)
O(1)#6-Zn(1)-O(1)#7	103.5(2)	O(1)#7-Zn(1)-O(1W)	114.93(17)

Symmetry transformations used to generate equivalent atoms: #1 y,x,-z+3/2; #2 x-y,x,-z+1; #3 y,-x+y,-z+1

2. The Structural Views of Four Compounds

Fig. S1 Asymmetric unit of the SiW-1 showing the atomic labeling scheme. Thermal ellipsoids are at the 50% probability level.

Fig. S2 Asymmetric unit of the **PVM-2** shown in the atomic labeling scheme. Thermal ellipsoids

are at the 50% probability level.

Fig. S3 Asymmetric unit of the PV_2M -3 shown in the atomic labeling scheme. Thermal ellipsoids are at the 50% probability level.

Fig. S4 Asymmetric unit of the PM-4 shown in the atomic labeling scheme. Thermal ellipsoids

are at the 50% probability level.

3. Characterization Section

3.1 The Powder X-ray power diffraction (PXRD) analysis

Fig. S5 The PXRD patterns of SiW-1, PVM-2, PV2M-3 and PM-4 in the range of 4 to 40 degree

Fig. S6 The PXRD patterns of SiW-1, PVM-2, PV₂M-3 and PM-4 after catalysis

3.2 The IR spectrum

Fig. S7 The FTIR spectrum of SiW-1, PVM-2, PV₂M-3 and PM-4

3.3 The EDS analysis

Fig. S8 The EDS of SiW-1 (a), PVM-2 (b), PV_2M -3 (c) and PM-4 (d)

	Ru (at. %)	Zn (at. %)	Mo (at. %)	P (at. %)	V (at. %)
SiW-1	1.77	1.28	7.08 (W)	0.82 (Si)	/
PVM-2	3.29	2.48	8.98	0.81	1.72
PV ₂ M-3	3.60	2.82	10.13	1.36	2.35
PM-4	3.88	2.82	14.10	1.52	/

Table S3 The atom rate of SiW-1, PVM-2, PV₂M-3 and PM-4

3.4 TG-DTA analysis

Fig. S9 The TGA-DTA curves of SiW-1, PVM-2, PV₂M-3 and PM-4 under air atmosphere

The thermogravimetric studies were carried out in air for SiW-1, PVM-2, PV₂M-3 and PM-4 at a heating rate of 10°C min⁻¹ in the temperature range from RT to 900° C (Fig. S9). The TGA curves of above four compounds show similar weight loss with three steps from RT to 600 °C. The weight loss from RT to 250 °C is attributed to the loss of solvent molecules. Further continuous weight from 250 to 600 °C is attributed to the decomposition of organic ligands. For SiW-1, the first step weight loss is 11.4 % (calc. 11.6 % with 9 DMF). For PVM-2, the first step weight loss is 14.4 % (calc. 14.5 % with 9 DMF). For PM-4, the first step weight loss is 14.5 % (calc. 14.2 % with 9 DMF).

Reference

- 1. M. K. Nazeeruddin, S. M. Zakeeruddin, R. Humphry-Baker, M. Jirousek, P. Liska, N. Vlachopoulos, V. Shklover, C. H. Fischer, M. Grätzel, *Inorg. Chem.*, **1999**, 38, 6298-6305.
- 2. G. A. Tsigdinos, C. J. Hallada, Inorg. Chem., 1968, 7, 437-441.
- SMART and SAINT software package, Siemens Analytical X-ray Instruments Inc., Madison, WI, 1996.
- 4. G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, 64, 112.
- (a) A. L. Spek, J. Appl. Crystallogr., 2003, 36, 7; (b) A. L. Spek, Acta Crystallogr., Sect. D: Biol. Crystallogr., 2009, 65, 148.