# Synthesis and Investigation of Cobalt Chalcogenide Clusters with Thienyl Phosphine Ligands as New Acceptor Materials for P3HT

B.J. Reeves<sup>a</sup>, D. M. Shircliff<sup>a</sup>, J. L. Shott<sup>a</sup>, and B. M. Boardman<sup>a\*</sup>,

<sup>a</sup>Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA 22802

## **Supplementary Information**

## Experimental

General Remarks. All manipulations were performed under inert atmosphere using standard glovebox and Schenk techniques, unless otherwise noted. Chlorodiethylphosphine (90%), chlorodiphenylphosphine (99%), 2,5-dibromothiophene (95%), and *n*-butyllithium (2.5 M in hexanes) were used as received from *Sigma-Aldrich*. All solvents were obtained from an Innovative Technology Solvent Purification System and were degassed before use. Nuclear magnetic resonance (<sup>1</sup>H NMR and <sup>31</sup>P NMR) spectra were obtained using a Bruker Advance DPX-400 or 300 NMR spectrometer; chemical shifts are reported in ppm downfield from tetramethylsilane (δ scale) and 85% H<sub>3</sub>PO<sub>4</sub> respectively. Gas chromatography mass spectrometry (GC-MS) analyses were performed with an Agilent Technologies 6890N Network GC system with a 5973 Network Mass Selective Detector. UV-Visible spectra were take in toluene and recorded using an HP 8453 Diode Array. Cyclic Voltammetry was performed on a CH Instruments CHI700D Electrochemical Analyzer. Powder X-Ray diffraction data was collected on a PANalytical X'Pert PRO MPD theta-theta Diffractometer.

**Preparation of 2-bromo-5-diethylphosphinothiophene** (1): 2,5-Dibromothiophene (0.449 mL, 3.98 mmol) was cooled to -78 °C in anhydrous diethyl ether (50 mL). n-Butyllithium (1.59 mL, 3.98 mmol) was then added and the mixture was allowed to warm to room temperature and stir for 2 hours. The resulting lithio-thiophene was then cooled back to -78 °C and chlorodiethylphosphine (0.485 mL, 3.98 mmol) was added. The solution was allowed to warm to room temperature overnight. H<sub>2</sub>O (50 mL) was

added to solubilize all precipitated materials. The isolated organic layer was then washed with  $H_2O$  (3x 20mL) and dried on sodium sulfate. The resulting pale orange/brown oil was purified on silica gel using petroleum ether as an effluent to afford slightly yellow oil, 0.842 g, 84.2% yield.

NMR <sup>1</sup>H (CDCl<sub>3</sub>) (Br-Th=C<sub>4</sub>H<sub>2</sub>BrS): 0.99, 1.01, 1.04, 1.04, 1.07, 1.09 (d of t, 6H,  $J_{H-H}$ =7.65 Hz,  $J_{P-H}$ =16 Hz, (Br-Th)P(CH<sub>2</sub>CH<sub>3</sub>)<sub>2</sub>), 1.65, 1.68, 1.70, 1.73(q, 4H,  $J_{H-H}$ =7.6 Hz, (Br-Th)P(CH<sub>2</sub>CH<sub>3</sub>)<sub>2</sub>), 6.99, 7.00 (d of d, 1H, ,  $J_{H-H}$ =3.6 Hz,  $J_{P-H}$ =0.8 Hz (Br-Th)P(CH<sub>2</sub>CH<sub>3</sub>)<sub>2</sub>), 7.06, 7.07, 7.08, 7.09 (d of d, 1H, ,  $J_{H-H}$ =6.3 Hz,  $J_{P-H}$ =2.7 Hz (Br-Th)P(CH<sub>2</sub>CH<sub>3</sub>)<sub>2</sub>); NMR <sup>31</sup>P (CDCl<sub>3</sub>): -22.0 ((Br-Th)P(CH(CH<sub>3</sub>)<sub>2</sub>)<sub>2</sub>). GC-MS (CDCl<sub>3</sub>) m/z: 250, 252. calc. mass: 250.  $\lambda_{Abs}$  = 293 nm,  $\lambda_{Em}$  = 366 nm, 527 nm.

**Preparation of 2-bromo-5-diphenylphosphinothiophene (2):** 2,5-Dibromothiophene (0.324 mL, 2.88 mmol) was cooled to -78 °C in anhydrous diethyl ether (50 mL). n-Butyllithium (1.15 mL, 2.88 mmol) was then added and the mixture was allowed to warm to room temperature and stir for 2 hours. The resulting lithio-thiophene was then cooled back to -78 °C and chlorodiphenylphosphine (1.15 mL, 2.88 mmol) was added. The solution was allowed to warm to room temperature overnight. H<sub>2</sub>O (50 mL) was added to solubilize all precipitated materials. The isolated organic layer was then washed with H<sub>2</sub>O (3x 20mL) and dried on sodium sulfate. The resulting pale orange/brown oil was purified on silica gel using petroleum ether as an effluent to afford a white crystalline solid, 0.78.9 g, 78.9% yield.

NMR <sup>1</sup>H (CDCl<sub>3</sub>) (Br-Th=C<sub>4</sub>H<sub>2</sub>BrS, Ph=C<sub>6</sub>H<sub>5</sub>): 7.05, 7.05, 7.06, 7.06 (d of d, 1H, ,  $J_{H-H}$ =3.7 Hz,  $J_{P-H}$ =1.24 Hz (Br-Th)P(CH<sub>2</sub>CH<sub>3</sub>)<sub>2</sub>), 7.09, 7.10, 7.11, 7.11 (d of d, 1H,  $J_{H-H}$ =6.2 Hz,  $J_{P-H}$ =3.7 Hz (Br-Th)P(Ph)<sub>2</sub>), 7.36 (m, 10H, (Br-Th)P(Ph)<sub>2</sub>); NMR <sup>31</sup>P (CDCl<sub>3</sub>): -17.9 ((Br-Th)P(C<sub>6</sub>H<sub>5</sub>)<sub>2</sub>. GC-MS (CDCl<sub>3</sub>) m/z: 346, 348. calc. mass: 347.  $\lambda_{Abs}$  = 295 nm,  $\lambda_{Em}$  = 361 nm, 516 nm. Experimental Mp (79.5 – 81.6 °C)

### Electrochemistry

Solutions of **3** and **4** in dimethylformamide (DMF) containing 0.1M of the supporting electrolyte tetrabutylammonium hexafluorophosphate (TBAPF<sub>6</sub>) in a single cell and potentiostat assembly were used for cyclic voltammetry measurements. The measurements were carried out with a glassy carbon working,

a platinum counter electrode, an  $Ag^+/AgCl$  reference electrode, and ferrocene/ferrocenium as in internal standard. The potentials were measured against a  $Ag^+/AgCl$  reference electrode and each measurement was calibrated using Fc/Fc<sup>+</sup> redox system. HOMO every levels were calculated as detailed in the text. The voltammagrams from **3** and **4** (Figure S-1 and S-2) can be seen below.



Figure S1: CV trace of  $Co_6Se_8(P(Et)_2(C_4H_2SBr)_6$  in the presence of the ferrocene/ferrocenium internal standard.



Figure S2: CV trace of  $Co_6Se_8(P(Ph)_2(C_4H_2SBr)_6$  in the presence of the ferrocene/ferrocenium internal standard .

### **UV-Visible and Fluorescence Data**



Figure S3. UV-Visible spectra of 1(blue) and 2 (red) in toluene.



Figure S4. Emission spectrum spectra of 1(blue) and 2 (red) in toluene excited at 287 nm.



Figure S5. Photoluminescence spectra of P3HT with addition of clusters 5 (a), 3 (b), and 4 (c).



Figure S6. PXRD of 3.



Figure S7. PXRD of 4.