Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2014

Supporting Information

Two Strandberg-type organophosphomolybdates: synthesis, crystal structure and catalytic properties

Jian-Ping Wang, Hong-Xin Ma, Lan-Cui Zhang,* Wan-Sheng You* and Zai-Ming Zhu*

- 1. Crystal structures
- 2. Characterizations
- 3. Catalytic activity tests
- 4. Bond lengths and angles

1. Crystal structures

Fig. S1 ORTEP view of the asymmetric units of **1** and **2** (a and b) with atom labeling (30% probability displacement ellipsoids; Hydrogen atoms and free water molecules have been omitted for clarity)

Fig. S2 Wire representation of the coordination type of polyanion 1 to Cu^{2+} ions in a 1-D chain structure (The hydrogen atoms have been omitted for clarity)

Fig. S3 Polyhedral and Ball-and-stick representation of the arrange of 1 (a/b/c), and the connective types of Cu^{2+} ions and 4,4'-bipyridyl ligands (d/e/f) in 1 along *a*, *b* and *c* axis, respectively (The polyanions and hydrogen atoms have been omitted for clarity)

Fig. S4 Polyhedral and ball-and-stick representation of the 3-D structure of 2 (The hydrogen atoms have been omitted for clarity)

Fig. S5 Wire representation of the coordination type of polyanion 2 to Cu^{2+} ions (The hydrogen atoms have been omitted for clarity)

Fig. S6 Polyhedral and Ball-and-stick representation of the arrange of polyanions (a/b/c), and the connective type of Cu²⁺ ions and 4,4'-bipyridyl ligands (d/e/f) in **2** along *a*, *b* and *c* axis, respectively (The polyanions and hydrogen atoms have been omitted for clarity)

2. Characterizations

Fig. S7 IR spectra of 1 and 2 (a and b).

Fig. S8 The simulated and experimental XRPD patterns of 1 and 2 (a and b)

Fig. S9 The TG-DTA curves of 1 and 2 (a and b).

Fig. S10 Emission spectra of 4,4'- bipyridyl and phenylphosphonic acid (C₆H₅PO₃H₂)

3. Catalytic activity tests

Scheme S1 Ketalization of cyclohexanone with glycol

Fig. S11 Effect of reaction time on cyclohexanone ethylene ketal yield: cyclohexanone (0.1 mol)/glycol molar ratio, 1:1.4; catalyst (based on Mo)/cyclohexanone molar ratio, 1:200; reaction temperature, 95-100 °C; water-carring agent, cyclohexane (10 mL)

Fig. S12 Effect of the material ratio on cyclohexanone ethylene ketal yield: catalyst (based on Mo)/cyclohexanone (0.1 mol) molar ratio, 1:200; reaction temperature, 95-100 °C; reaction time, 2.5 h. water-carring agent, cyclohexane (10 mL)

Fig. S13 Effect of the amount of **1** on cyclohexanone ethylene ketal yield: cyclohexanone (0.1 mol)/glycol molar ratio, 1:1.4; reaction temperature, 95-100 °C; reaction time, 2.5 h; water-carring agent, cyclohexane (10 mL)

Fig. S14 The catalytic activities of **1** and **2** used four cycles. (a) The catalysts were recovered by simple filtration without any treatment; (b) The recovered catalysts were washed with ethyl ether and water, respectively. The reaction conditions: catalyst (based on Mo)/cyclohexanone (0.1 mol) molar ratio, 1:200; cyclohexanone (0.1 mol)/glycol molar ratio, 1:1.4; reaction temperature, 95-100 °C; reaction time, 2.5 h; water-carring agent, cyclohexane (10 mL)

4. Bond lengths and angles

Dand	Longth (Å)	Dond	Longth (Å)	Dond	Longth (Å)
Bolla	Length (A)	Bond	Length (A)	Bond	Length (A)
Mo1–O6	1.718(3)	Mo2-O1	1.996(3)	Cu1–O1W	1.944(3)
Mo1-O6#1	1.718(3)	Mo2-O10#1	2.206(3)	Cu1–O2#2	1.955(3)
Mo1–O4	1.903(2)	Mo2–O7	2.376(2)	Cu1–N1	2.013(3)
Mo1-O4#1	1.903(2)	Mo3–O8	1.686(2)	Cu1–N2	2.015(3)
Mo1–O7	2.296(3)	Mo3–O2	1.741(3)	Cu1–O6	2.381(3)
Mo1-O7#1	2.296(3)	Mo3–O5	1.8964(10)	P1-O3	1.502(3)
Mo2-O11	1.688(3)	Mo3-O1	1.900(3)	P1-07	1.533(3)
Mo2-O9	1.718(3)	Mo3–O3	2.235(3)	P1-O10	1.560(3)
Mo2–O4	1.908(3)	Mo3-O10#1	2.325(3)	P1-C1	1.787(4)
Bond	Angle (°)	Bond	Angle (°)	Bond	Angle (°)
O6-Mo1-O6#1	102.14 (19)	O4-Mo2-O1	152.90(11)	N1-Cu1-O6	90.03(12)
O6#1-Mo1-O4	101.73(12)	O8-Mo3-O2	102.30(13)	N1-Cu1-N2#2	171.47(14)
O4-Mo1-O4#1	145.36(16)	O8-Mo3-O5	96.37(10)	O3-P1-O7	111.38(15)
O11-Mo2-O9	104.01(14)	O5-Mo3-O1	148.13(14)	O3-P1-O10	109.21(15)
O11-Mo2-O4	95.49(13)	O1W-Cu1-N2#2	91.32(13)	O7-P1-C1	107.96(18)

Table S1 Selected bond lengths and angles for compound 1

Symmetry transformations used to generate equivalent atoms: #1 -x,-y,z; #2 -x-1/4,y+1/4,z-1/4

Table S2 Hydrogen bonds for 1 $d(H^{\dots}A)\,(\text{\AA})$ ∠(DHA) (°) D−H…A $d(D \cdots A)$ (Å) d(D-H) (Å) O1W-H1WA...O1#1 0.845(10) 1.769(13) 2.609(4) 173(5) O1W-H1WB...O9#2 0.842(10) 1.916(16) 2.741(4) 166(5)

Symmetry transformations used to generate equivalent atoms: #1 x-1/2,y,z-1/2; #2 -x,-y,z

Bond	Length (Å)	Bond	Length (Å)	Bond	Length (Å)
Dolla	Lengui (A)	Dolla	Length (A)	Dolla	Length (A)
Mo1–O3	1.702(3)	Mo2–O4	1.946(3)	Cu1-O5#2	1.927(3)
Mo1-O3#1	1.702(3)	Mo2–O7	2.183(3)	Cu1–O8	1.956(3)
Mo1-O2#1	1.938(3)	Mo2–O1	2.379(3)	Cu1–O1W	1.962(3)
Mo1-O2	1.938(3)	Mo3-O11	1.685(3)	Cu1–N1	1.992(4)
Mo1-O1#1	2.278(3)	Mo3-O10	1.708(3)	Cu1-O2W	2.511(3)
Mo1–O1	2.278(3)	Mo3–O9	1.8839(7)	P1-O8	1.528(3)
Mo2-O6	1.677(3)	Mo3–O4	1.885(3)	P1O1	1.534(3)
Mo2-O5	1.735(3)	Mo3–O8	2.519(3)	P1-O7#1	1.536(3)
Mo2–O2	1.892(3)	Mo3–O7	2.597(3)	P1C1	1.781(4)
Bond	Angle (°)	Bond	Angle (°)	Bond	Angle (°)
O3-Mo1-O3#1	104.6 (2)	O2-Mo2-O4	149.39(12)	O8–Cu1–N1	93.44(14)
O3-Mo1-O2#1	100.13(14)	O11-Mo3-O10	103.22(17)	O1W-Cu1-N1	178.92(16)
O3-Mo1-O2	98.86(14)	O9-Mo3-O4	134.62(14)	O8-P1-O1	109.68(16)
O6-Mo2-O5	103.82(15)	O10-Mo3-O8	76.38(13)	O8-P1-O7#1	107.15(16)
O5-Mo2-O4	94.18(13)	O8-Cu1-O1W	85.79(13)	O1-P1-C1	107.10(18)

Table S3 Selected bond lengths and angles for compound 2

Symmetry transformations used to generate equivalent atoms: #1 -x,y,-z+1/2; #2 -x+1/2,y-1/2,-z+1/2

 Table S4 Hydrogen bonds for 2

	,				
D–H···A	d(D-H) (Å)	$d(H \cdots A)(Å)$	$d(D \cdots A)$ (Å)	∠(DHA) (°)	
O1W-H1WAO3#1	0.845(10)	1.967(15)	2.800(4)	168(5)	
O1W-H1WBO4	0.843(11)	2.05(2)	2.833(5)	155(5)	

Symmetry transformations used to generate equivalent atoms: #1 -x+1/2,y-1/2,-z+1/2