Electronic Supplementary Information

Construction of dentate bonded $\mathbf{T i O}_{2}$ - $\mathbf{C d S e}$ heterostructures with enhanced photoelectrochemical property: Versatile labels toward photoelectrochemical and electrochemical biosensing

Picheng Gao, Hongmin Ma, Tao Yan, Dan Wu, Xiang Ren, Jiaojiao Yang, Bin Du and Qin Wei*

Key Laboratory of Chemical Sensing \& Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
*Corresponding author. Tel.: +86 53182767872.

E-mail address: sdjndxwq@163.com (Q. Wei).

Scheme S1. Schematic illustration for the formation process and mechanism of $\mathrm{TiO}_{2}-\mathrm{CdSe}$ heterostructures.

Preparation of AuNPs

Typically, $25 \mathrm{~mL} 0.01 \%$ (wt) HAuCl_{4} aqueous solution was stored in 50 mL round-bottom flaskand heated to boiling, then $0.4 \mathrm{~mL} 1 \%(\mathrm{wt})$ sodium citrate was added into the boiling solution under stirring for 30 min . Gold colloidal solution inwine red color was obtained eventually and was used for the following modification of the immunosensor.

Fig.S1 TEM image (A) and UV-vis spectrum (B) of AuNPs. Inset of A shows size distribution of AuNPs.

Fig. $\mathbf{S} 2$ Optimization of $\mathrm{pH}(\mathrm{A})$ and AA concentration (B).

Fig. S3Time-based photocurrent response of the immunosensorincubated with 5 $\mathrm{ng} \cdot \mathrm{mL}^{-1} \mathrm{HIgG}$. A 30 W white LED light was used as the illumination source and the applied potential is 0 V .

Fig. S4 Reproducibilityof the immunosensor detected by PEC method.

Table S1. Detection results of HIgG in human serum

Detected concentration of HIgG in serum sample ($\mathrm{ng} \cdot \mathrm{mL}^{-1}$)	$\begin{gathered} \text { Added } \\ \text { HIgG } \\ \left(\mathrm{ng} \cdot \mathrm{~mL}^{-1}\right) \end{gathered}$	$\begin{gathered} \text { Detected } \\ \text { concentration } \\ \text { of } \mathrm{HIgG} \text { by } \\ \text { PEC } \\ \left(\mathrm{ng} \cdot \mathrm{~mL}^{-1}\right) \end{gathered}$	$\begin{gathered} \text { RSD } \\ (\%) \end{gathered}$	Recovery (\%)	$\begin{gathered} \text { Detected } \\ \text { concentration } \\ \text { of } \mathrm{HIgG} \text { by } \\ \mathrm{EC} \\ \left(\mathrm{ng} \cdot \mathrm{~mL}^{-1}\right) \end{gathered}$	RSD	Recovery
0.65	0.30	$\begin{gathered} \hline 0.98,0.92 \\ 0.90,1.01 \\ 1.02 \end{gathered}$	5.64	101.7	$\begin{gathered} 1.05,1.02, \\ 0.92,0.99 \\ 0.98 \end{gathered}$	5.12	104.4
	0.60	$\begin{gathered} \text { 1.20, } 1.18 \\ \text { 1.26, 1.33, } \\ 1.21 \end{gathered}$	4.82	98.8	$\begin{gathered} \text { 1.31, 1.35, } \\ \text { 1.22, 1.28, } \\ 1.19 \end{gathered}$	5.21	101.6
	1.00	$\begin{gathered} \text { 1.71, 1.68 } \\ \text { 1.75, 1.61 } \\ 1.68 \end{gathered}$	3.11	102.2	$\begin{gathered} 1.58,1.62 \\ 1.56,1.69 \\ 1.61 \end{gathered}$	3.01	97.7

