Supporting Information for the Manuscript

CS₂ activation at uranium(III) siloxide complexes: the effect of a Lewis acidic site

Clément Camp,^a Oliver Cooper,^a Julie Andrez, ^a Jacques Pécaut^a and Marinella Mazzanti^{ab*}

^aLaboratoire de Reconnaissance Ionique et Chimie de Coordination, SCIB, UMR-E3 CEA-UJF, INAC, CEA-Grenoble, 17 rue des Martyrs, F-38054 Grenoble Cedex 09, France Fax: (+)33(0)438785090 ; ^b EPFL, ISIC, Batiment CH J2 490, 1015 Lausanne, Switzerland E-mail: marinella.mazzanti@cea.fr

*Correspondence to Dr. Marinella Mazzanti

Table of Contents

- A) NMR spectra
- B) Mass Spectrometry
- C) Crystallographic data

A) NMR Spectra

Figure S1: ¹H NMR spectrum (200 MHz, toluene- d_8 , 298K) of the crude reaction mixture of CS₂ and **1** after 30 minutes.

Figure S2: ¹H NMR spectrum (200 MHz, toluene- d_8 , 298K) of the crude reaction mixture of CS₂ and **1** over the course of two days.

Figure S3: ¹³C{¹H} NMR spectrum (400 MHz, pyridine- d_5 , 298K) of the crystals of [K(18-c-6)]C₂S₄.Py **4 py** isolated from pyridine/hexane. (The same spectrum was measured for the solid obtained after washing with hexane of the crude obtained by evaporation of the toluene solution of **1** reacted with ¹³CS₂ for 30 minutes.)

Figure S4: Quantitative ¹³C NMR spectrum (400 MHz, DMSO- d_6 , 298 K) of the reaction mixture between 1 eq. ¹³CS₂ and [K(18c6)][U(OSi(O^tBu)₃)₄], **1** after 48 hours.

Figure S5: ¹H NMR spectrum (200 MHz, toluene- d_8 , 298 K) of the crude reaction mixture between 1 equiv. CS₂ and **2** over time.

Figure S6: ¹³C{¹H} NMR spectrum (400 MHz, DMSO- d_6 , 298K) of crystals of (C₂S₄)[K(DMSO)_{1.5}].

Figure S7: ¹³C NMR spectrum (400 MHz, DMSO- d_6 , 298 K) of the crude reaction mixture between 4 equiv. of ¹³CS₂ and **2** after 48 hours.

Table S1: Ratio of the reaction products from the reactions of 1 and 2 with CS₂.

Compound	Eq. of CS ₂	Ratio of CS ₃	Ratio of C ₂ S ₄	Ratio of C_3S_5
[U(OSi(O ^t Bu) ₃) ₄][K18c6] 1	1	10	0	1
[U(OSi(O ^t Bu) ₃) ₄][K18c6] 1	4	5	0	1
[U(OSi(O ^t Bu) ₃) ₄ K] 2	1	1	1.2	1
[U(OSi(O ^t Bu) ₃) ₄ K] 2	2	1	3.7	1
[U(OSi(O ^t Bu) ₃) ₄ K] 2	4	1	5.9	1

B) Mass Spectrometry

Figure S8: ESI-MS spectrum of the reaction mixture between **1** and CS₂ in THF (positive ionization mode). Insert: zoom on the molecular peak compared with the theoretical isotopic profile calculated for $[K(18-c-6)]_2[U(\mu-\eta^1:\eta^2CS_3)(OSi(O^tBu)_3)_4-H]^+$ (3-H)⁺.

C) Crystallographic Data

Figure S9: Ellipsoid plot for of $[K_2C_2S_4(DMSO)_3]_n$, **5**; probability 50%. Hydrogen atoms are omitted for clarity. (a) Asymetric unit ; (b) View of the 2-D coordination polymer.

Figure S10: Solid-state structure of $[U(OSi(O^tBu)_3)_4K_2(C_3S_5)]_{n,}$ **6** showing the 1D-coordination polymeric arrangement. Hydrogen atoms are omitted for clarity.

 Table S2. Crystallographic Data for Compounds 3-5.

	4.Py	3. 4 toluene	5
Formula	$C_{31}H_{53}K_2NO_{12}S_4$	$C_{101}H_{188}K_2O_{28}S_3Si_4U$	$C_8H_{18}K_2O_3S_7$
Crystal size (mm)	1.07 x 0.13 x 0.02	0.544 x 0.440 x 0.349	0.522 x 0.265 x 0.020
cryst syst	Monoclinic	Triclinic	Triclinic
space group	C 2/c	P -1	P-1
volume (ų)	4109.4(11)	6545.9(5)	1008.95(6)
a (Å)	23.321(3)	14.8483(6)	9.9182(3)
b (Å)	10.1497(5)	17.9359(8)	10.2993(4)
c (Å)	21.907(3)	25.5598(12)	10.3745(4)
α (deg)	90	81.725(4)	90.141(3)
β (deg)	127.579(19)	85.150(3)	107.571(3)
γ (deg)	90	76.692(4)	92.782(3)
Z	4	2	2
formula weight (g/mol)	838.18	2375.27	464.84
density (g cm ⁻³)	1.355	1.205	1.530
absorption coefficient (mm ⁻¹)	0.489	1.449	1.194
F(000)	1776	2504	480
temp (K)	150.0(2)	150.0(2)	150.0(2)
total no. reflections	20966	59744	12179
unique reflections [R(int)]	5082 [R(int) = 0.0672]	26722 [R(int) = 0.0880]	6084 [R(int) = 0.0408]
Final R indices $[I > 2\sigma(I)]$	R1 = 0.0611,	R1 = 0.0919,	R1 = 0.0472,
,-	wR2 = 0.1339	wR2 = 0.2028	wR2 = 0.0708
Largest diff. peak and hole e.Å	0.967 and -0.471	3.509 and -1.881	0.459 and -0.400
GOF	1.034	1.070	1.023