Electronic Supplementary Information

Spin-glass Behavior of a Hierarchically-Organized, Hybrid Microporous Material, Based on an Extended Framework of Octanuclear Iron-Oxo Units

Xin-Yi Cao,[†] Jeremiah W. Hubbard,[§] Jennifer Guerrero-Medina,[§] Arturo J. Hernández-Maldonado,[§] Logesh Mathivathanan, [†] Carlos Rinaldi,^{§,#,*} Yiannis Sanakis,^{‡,*} and Raphael G. Raptis^{†,*}

[†] Department of Chemistry and Institute for Functional Nanomaterials, University of Puerto Rico, San Juan, PR 00936-8377. Present address: Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199.

[‡] Institute of Materials Science, NCSR "Demokritos", 15310 Aghia Paraskevi, Athens, Greece.

^s Department of Chemical Engineering, University of Puerto Rico-Mayagüez Campus, Mayagüez, PR 00681-9000.

*Present address: J. Crayton Pruitt Family Department of Biomedical Engineering and Department of Chemical Engineering, University of Florida, Gainesville, FL 32611.

Fax: (305) 348-3772

E-mail: rraptis@fiu.edu (R. G. R.); sanakis@ims.demokritos.gr (Y. S.); carlos.rinaldi@bme.ufl.edu (C. R.)

Figure S1. CV (top), DPV (middle) and OSWV (bottom) of intermediate cluster ion $[Fe_8(\mu_4-O)_4(\mu-pz)_{12}(CH_3CN)_4]^{4+}$ in 0.5 M Bu₄N·PF₆ of CH₂Cl₂/CH₃CN solution using a non-aqueous Ag/AgNO₃ reference electrode, Pt auxiliary electrode, and Pt working electrode.

Figure S2. CV (top), DPV (middle) and OSWV (bottom) of intermediate cluster ion $[Fe_8(\mu_4-O)_4(\mu-4-Me-pz)_{12}(CH_3CN)_4]^{4+}$ in 0.5 M Bu₄N·PF₆ of CH₂Cl₂/CH₃CN solution using a non-aqueous Ag/AgNO₃ reference electrode, Pt auxiliary electrode, and Pt working electrode.

		Potential, V		
	$E_{1/2}(1)$	E _{1/2} (2)	E _{1/2} (3)	E _{1/2} (4)
[Fe ₈ (µ ₄ -O) ₄ (µ-pz) ₁₂ (CH ₃ CN) ₄] ⁴⁺	-0.36	-0.61	-0.92	
$[Fe_8(\mu_4-O)_4(\mu-pz)_{12}Cl_4]$	-0.43 ^a	-0.78 ^a	-0.107 ^a	-1.38 ^a
$[Fe_8(\mu_4-O)_4(\mu-4-Me-pz)_{12}(CH_3CN)_4]^{4+}$	-0.49	-0.77	-1.09	-1.24
$[Fe_8(\mu_4-O)_4(\mu-4-Me-pz)_{12}Cl_4]$	-0.58 ^a	-0.91 ^a	-1.20ª	-1.55 ^a

Table S3. Cyclic voltammetric data for intermediate clusters and their corresponding parent clusters in CH₂Cl₂/CH₃CN at 298 K.

^a Data from ref. 9b.

Figure S4. UV-Vis-NIR spectroscopies of intermediate clusters and their corresponding parent clusters in CH₂Cl₂/CH₃CN at 298 K with $[Fe_8(\mu_4-O)_4(\mu-pz)_{12}(CH_3CN)_4]^{4+}$ ($\lambda_{max} = 382 \text{ nm}$), $[Fe_8(\mu_4-O)_4(\mu-pz)_{12}Cl_4]$ ($\lambda_{max} = 360 \text{ nm}$), $[Fe_8(\mu_4-O)_4(\mu-4-Me-pz)_{12}(CH_3CN)_4]^{4+}$ ($\lambda_{max} = 385 \text{ nm}$), and $[Fe_8(\mu_4-O)_4(\mu-4-Me-pz)_{12}Cl_4]$ ($\lambda_{max} = 372 \text{ nm}$).

Figure S5. IR spectra of KBR pellets of complexes **1** (upper, red) and **2** (middle, red) and their corresponding parent clusters (blue) and powder sample of ¹⁸O-labelled **2** (lower).

Figure S6. Top figure shows a tetrahedral motif of Fe_8 -cluster with an inserted imaginery atom in the center of the cubane; middle is the simplified 4-connected unit of Fe_8 -cluster

with angle parameters; bottom is the 4-connected unit in diamond network of crystalline cubic silicon.

Figure S7. ZFC/FC measurements at various applied magnetic fields for sample **2**. The sample displays a peak in the ZFC curve at ~30 K.

Figure S8. Zero field cooled (ZFC) measurements as a function of field and normalized with respect to peak height for sample 2. The curves display a peak that is at ~30 K for the low fields and shift slightly to lower temperatures as the field increases (insert).

The field-dependent magnetization, M(H), was measured at selected temperatures (15, 50 and 298.15 K) between \pm 7 Tesla after cooling in zero field. Hysteresis with weak coercive behavior is observed for **1** and **2** with comparable coercive fields (Hc) of 4 and 2 Oe, respectively. **Fig. S9** shows the equilibrium magnetization measurements at selected temperatures for compound **1**. The magnetic behavior varies with temperature. The insert shows the hysteresis at 15 K. Remanence of 7.31×10^{-3} Am²/kg_{sample} (emu/g) and coercivity of -10181 A/m were determined for compound **1** at 15 K. **Fig. S10** illustrates the equilibrium magnetization measurements at selected temperatures for compound **2** and the insert shows the hysteresis at 15 K. This sample shows similar magnetic behavior at the measured temperatures, with a remanence of 2.08×10^{-3} Am²/kg_{sample} (emu/g) and coercivity of -6813 A/m at 15 K.

Fig. S9. Equilibrium magnetization measurements at selected temperatures for complex 1 (left) and 2 (right). The insert shows the hysteresis at 15 K.

Figure S10. Temperature dependence of Mössbauer spectrum of 2. Red lines are simulations.