Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2014

Supporting information

A new bulky iminophosphonamide as an N,N'-chelating ligand: synthesis and structural characterization of heteroleptic group 13 elements complexes

Billa Prashanth^a and Sanjay Singh*^a

^aDepartment of Chemical Sciences, Indian Institute of Science Education and Research Mohali,

Knowledge City, Sector 81, SAS Nagar, Mohali 140306, Punjab, India.

E-mail: sanjaysingh@iisermohali.ac.in

(14 Pages)

Contents: 25 Figures: Fig. S1 to Fig. S25 for multinuclear NMR spectrum of compounds 1-8.

Fig. S1 Room temperature ¹H NMR (400 MHz, CDCl₃) spectrum of [(2,6-*i*Pr₂C₆H₃N)P(Ph₂)(N*t*Bu)]H (LH). The Inset shows the ³¹P{¹H} spectrum.

Fig. S2 Room temperature ¹³C NMR (100 MHz, CDCl₃) spectrum of [(2,6-*i*Pr₂C₆H₃N)P (Ph₂)(N*t*Bu)]H (LH).

Fig. S3 Room temperature ¹H NMR (400 MHz, toluene- d_8) spectrum of [(2,6- $iPr_2C_6H_3N$) P(Ph₂)(NtBu)](Li·2THF) (1). Inset 1a shows the ³¹P{¹H} NMR (162 MHz, toluene- d_8 , -35 °C) spectrum and ⁷Li NMR (155 MHz, toluene- d_8 , -35 °C) spectrum is shown in inset 1b.

Fig. S4 ¹³C NMR (100 MHz, toluene- d_8 , -35 °C) spectrum of [(2,6-*i*Pr₂C₆H₃N)P(Ph₂)(N*t*Bu)] (Li·2THF) (1).

Fig. S5 ¹H NMR (400 MHz, toluene- d_8 , -35 °C) spectrum of [{(2,6-*i*Pr₂C₆H₃N)P(Ph₂)(N*t*Bu)}AlH₂]₂ (2). Inset 1a shows the ³¹P{¹H} NMR (162 MHz, toluene- d_8 , -35 °C) spectrum and ²⁷Al NMR (104 MHz, toluene- d_8 , -35 °C) NMR spectrum is shown in inset 1b.

Fig. S6 ¹³C NMR (100 MHz, toluene- d_8 , -35 °C) spectrum of [{(2,6-*i*Pr₂C₆H₃N)P(Ph₂)(N*t*Bu)}AlH₂]₂ (2).

Fig. S7 Room temperature ¹H NMR (400 MHz, C_6D_6) spectrum of [{(2,6-*i*Pr₂C₆H₃N)P(Ph₂)(N*t*Bu)}AlH₂]₂ (2). Inset **1a** shows the ³¹P{¹H} NMR (162 MHz, C_6D_6) spectrum and ²⁷Al NMR (104 MHz, C_6D_6) NMR spectrum is shown in inset **1b**.

Fig. S8 Room temperature ¹³C NMR (100 MHz, C_6D_6) spectrum of [{(2,6-*i*Pr₂C₆H₃N)P(Ph₂)(N*t*Bu)}AlH₂]₂ (2).

Fig. S9 ¹H NMR (400 MHz, toluene- d_8 , -35 °C) spectrum of [(2,6- $iPr_2C_6H_3N$)P(Ph₂)(NtBu)]AlMe₂ (3). Inset 1a shows the ³¹P{¹H} (162 MHz, toluene- d_8 , -35 °C) spectrum and ²⁷Al NMR (104 MHz, toluene- d_8 , -35 °C) spectrum is shown in inset 1b.

Fig. S10 ¹³C NMR (100 MHz, toluene-*d*₈, -35 °C) spectrum of [(2,6-*i*Pr₂C₆H₃N)P(Ph₂)(N*t*Bu)]AlMe₂ (3).

Fig. S11 Room temperature ¹H NMR (400 MHz, CDCl₃) spectrum of [(2,6-*i*Pr₂C₆H₃N)P(Ph₂)(N*t*Bu)]BCl₂
(4). Inset 1a shows the ³¹P{¹H} (162 MHz, CDCl₃) spectrum and ¹¹B NMR (128 MHz, CDCl₃) spectrum is shown in inset 1b.

Fig. S12 Room temperature ¹³C NMR (100 MHz, CDCl₃) spectrum of $[(2,6-iPr_2C_6H_3N)P(Ph_2)(NtBu)]BCl_2$ (4).

Fig. S13 Room temperature ¹H NMR (400 MHz, C_6D_6) spectrum of [(2,6-*i*Pr₂C₆H₃N)P(Ph₂)(N*t*Bu)]AlCl₂ (5). Inset **1a** shows the ³¹P{¹H} (162 MHz, C_6D_6) spectrum and ²⁷Al NMR (104 MHz, C_6D_6) spectrum is shown in inset **1b**.

Fig. S14 Room temperature ¹³C NMR (100 MHz, C_6D_6 , 25 °C) spectrum of [(2,6-*i*Pr₂C₆H₃N)P(Ph₂)(N*t*Bu)]AlCl₂ (5).

Fig. S15 ¹H NMR (400 MHz, toluene- d_8 , -35 °C) spectrum of [(2,6- $iPr_2C_6H_3N$)P(Ph₂)(NtBu)]GaCl₂ (6). Inset shows the ³¹P{¹H} (162 MHz, toluene- d_8 , -35 °C) spectrum.

Fig. S16 ¹³C NMR (100 MHz, toluene-*d*₈, -35 °C) spectrum of [(2,6-*i*Pr₂C₆H₃N)P(Ph₂)(N*t*Bu)]GaCl₂ (6).

Fig. S17 ¹H NMR (400 MHz, THF- d_8 , -35 °C) spectrum of [{(2,6-*i*Pr₂C₆H₃N)P(Ph₂)(N*t*Bu)}AlMe]⁺ [MeB(C₆F₅)₃]⁻ (7). Inset shows the ³¹P{¹H} (162 MHz, THF- d_8 , -35 °C) spectrum.

Fig. S18 ¹³C NMR (100 MHz, THF- d_8 , -35 °C) spectrum of [{(2,6-*i*Pr₂C₆H₃N)P(Ph₂)(N*t*Bu)}AlMe]⁺ [MeB(C₆F₅)₃]⁻ (7).

Fig. S19 ¹¹B (128 MHz, THF-*d*₈, −35 °C), ¹⁹F (376 MHz, THF-*d*₈, −35 °C), and ²⁷Al NMR (104 MHz, THF-*d*₈, −35 °C) spectrum of [{(2,6-*i*Pr₂C₆H₃N)P(Ph₂)(N*t*Bu)}AlMe]⁺ [MeB(C₆F₅)₃]⁻ (7) is shown in figure **1a**, **1b** and **1c**, respectively.

Fig. S20 This sample was prepared in THF at room temperature and NMR recorded in C_6D_6 at room temperature. ¹H NMR (400 MHz, C_6D_6) spectrum of [{(2,6-*i*Pr₂C₆H₃N)P(Ph₂)(N*t*Bu)}AlMe]⁺[MeB(C₆F₅)₃]⁻ (7). Inset **1a** shows ²⁷Al NMR (104 MHz, C_6D_6) and **1b** shows the ¹⁹F NMR (376 MHz, C_6D_6) spectrum.

Fig. S21 This sample was prepared in THF at room temperature and NMR recorded in C_6D_6 at room temperature. ¹³C NMR (100 MHz, C_6D_6) spectrum of [{(2,6-*i*Pr₂C₆H₃N)P(Ph₂)(N*t*Bu)}AlMe]⁺[MeB(C₆F₅)₃]⁻ (7). Inset 1a shows ³¹P{¹H} (162 MHz, C₆D₆) NMR and 1b shows the ¹¹B (128 MHz, C₆D₆) NMR spectrum.

Fig. S22 Room temperature *in-situ* ¹H NMR (400 MHz, C_6D_6) spectrum of [(2,6-*i*Pr₂C₆H₃N)P(Ph₂)(NtBu)]AlMe(C₆F₅) (8) recorded after 2 days of sample preparation. Inset 1a shows the ³¹P{¹H} (162 MHz, C₆D₆) spectrum and the ²⁷Al NMR (104 MHz, C₆D₆) spectrum is shown in inset 1b.

Fig. S23 Room temperature *in-situ* ¹³C NMR (100 MHz, C_6D_6) spectrum of [(2,6*i*Pr₂C₆H₃N)P(Ph₂)(N*t*Bu)]AlMe(C₆F₅) (8) recorded after 2 days of sample preparation.

Fig. S24 Room temperature *in-situ* ¹⁹F NMR (376 MHz, C_6D_6) spectrum of [(2,6*i*Pr₂C₆H₃N)P(Ph₂)(NtBu)]AlMe(C₆F₅) (8) recorded after 2 days of sample preparation. Compound 9 is MeB(C₆F₅)₂.

Fig. S25 Room temperature *in-situ* ¹¹B NMR (128 MHz, C_6D_6) spectrum of [(2,6*i*Pr₂C₆H₃N)P(Ph₂)(N*t*Bu)]AlMe(C₆F₅) (8) recorded after 2 days of sample preparation. Compound 9 is MeB(C₆F₅)₂.