Supplementary Information

Simple and Extremely Efficient Blue Emitters Based on Mononuclear Cu(I)-Halide Complexes with Delayed Fluorescence

Hiroki Ohara, ^a Atsushi Kobayashi ^{a, b} and Masako Kato* ^a

^aDepartment of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kitaku, Sapporo, Hokkaido 060-0810, Japan

^bPrecursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Honcho 4-1-8, Kawaguchi-shi, Saitama 332-0012, Japan

Contents

Fig. S1. PXRD patterns of 2 and 3 .	2
Fig. S2. Emission decays of 1-3 in the solid states.	3
Fig. S3. Schematic molecular orbital diagrams and orbital shapes related to calculated transition of 1 .	
	4
Fig. S4. Schematic molecular orbital diagrams and orbital shapes related to calculated transition of 2A	
and 2B .	5
Fig. S5. Schematic molecular orbital diagrams and orbital shapes related to calculated transition of 3A	
and 3B .	6
Fig. S6. ¹ H NMR spectra (CDCl ₃) of 1 , 2 and 3 .	
	10
Table S1. Energy, oscillator strength and major contribution of calculated transition 1	for 7
Table S2. Energy, oscillator strength and major contribution of calculated transition for	r 2 .
	8
Table S3. Energy, oscillator strength and major contribution of calculated transition for	с 3 .
	9

Fig. S1. PXRD patterns of **2** and **3** prepared by Method 2 and simulated diffraction pattern based on the single crystal structure of **2** and **3**.

Fig. S2. Emission decays of **1-3** in the solid states (a, b and c) and time-resolved emission spectra of **1-3** at 298 K (d, e and f) and 77 K (g, h and i).

Fig. S3. Schematic molecular orbital diagrams and orbital shapes related to calculated transition of **1**. Molecular structure is determined by X-ray crystallographic analysis.

Fig. S4. Schematic molecular orbital diagrams and orbital shapes related to calculated transition of **2A** (left) and **2B** (right) which are based on two geometries determined by X-ray crystallography (see Fig. 1 (b) and (c)).

Fig. S5. Schematic molecular orbital diagrams and orbital shapes related to calculated transition of **3A** (left) and **3B** (right) which are based on two geometries determined by X-ray crystallography (see Fig. 1 (d) and (e)).

Excited state	Energy / eV (nm)	Oscillator strength	Major contribution (%)
1	3.2234 (384.64)	0.0079	HOMO-1->LUMO (74)
			HOMO->LUMO (26)
2	3.2396 (382.72)	0.0118	HOMO->LUMO (74)
			HOMO-1->LUMO (26)
3	3.3467 (370.46)	0.0004	HOMO-2->LUMO (100)
4	3.5358 (350.65)	0.0100	HOMO->LUMO+1 (63)
			HOMO-1->LUMO+1 (24)
			HOMO->LUMO+2 (13)
5	3.5700 (347.29)	0.0008	HOMO-1->LUMO+1 (58)
			HOMO->LUMO+1 (23)
			HOMO-1->LUMO+2 (19)
6	3.6725 (337.60)	0.0099	HOMO->LUMO+2 (47)
			HOMO-1->LUMO+2 (17)
			HOMO->LUMO+3 (14)
			HOMO->LUMO+1 (12)
			HOMO-2 ->LUMO+1 (10)
7	3.6971 (335.35)	0.0021	HOMO-2 ->LUMO+1 (39)
			HOMO-2->LUMO+2 (16)
			HOMO->LUMO+2 (14)
			HOMO-1->LUMO+2 (12)
			HOMO-2->LUMO+3 (10)
			HOMO-1->LUMO+1 (9)
8	3.7154 (333.70)	0.0163	HOMO-1->LUMO+2 (48)
			HOMO-2->LUMO+1 (17)
			HOMO-1->LUMO+1 (13)
			HOMO->LUMO+2 (12)
			HOMO-2->LUMO+2 (10)
9	3.7584 (329.89)	0.0040	HOMO->LUMO+3 (55)
			HOMO-1->LUMO+3 (19)
			HOMO->LUMO+2 (16)
			HOMO->LUMO+4 (10)
10	3.7993	0.0392	HOMO-1->LUMO+3 (67)
	(326.33)		HOMO->LUMO+3 (20)
_			HOMO-1->LUMO+4 (13)

Table S1. Energy, oscillator strength and major contribution of calculated transition for 1.

Excited	Energy / e	eV (nm)	Oscillator	strength	Major contribution (%)	
state						
	А	В	А	В	А	В
1	3.0315	3.0045	0.0035	0.0026	HOMO->LUMO (100)	HOMO->LUMO (100)
	(408.98)	(412.67)				
2	3.1365	3.1128	0.0032	0.0046	HOMO-1 ->LUMO (86)	HOMO-1 ->LUMO (78)
	(395.30)	(398.30)			HOMO-2 ->LUMO (14)	HOMO-2 ->LUMO (22)
3	3.2298	3.2030	0.0087	0.0066	HOMO-2 ->LUMO (84)	HOMO-2 ->LUMO (77)
	(383.88)	(387.09)			HOMO-1 ->LUMO (16)	HOMO-1 ->LUMO (23)
4	3.2820	3.2693	0.0032	0.0070	HOMO ->LUMO+1 (83)	HOMO ->LUMO+1 (83)
	(377.77)	(379.24)			HOMO ->LUMO+3 (17)	HOMO ->LUMO+2 (13)
5	3.3890	3.3771	0.0033	0.0030	HOMO-1 ->LUMO+1 (84)	HOMO-1 ->LUMO+1 (86)
	(365.84)	(367.13)			HOMO-1 ->LUMO+3 (16)	HOMO-1 ->LUMO+2 (14)
6	3.4618	3.4603	0.0068	0.0044	HOMO ->LUMO+2 (100)	HOMO-2 ->LUMO+1 (86)
	(358.15)	(358.30)				HOMO-2 ->LUMO+2 (14)
7	3.4799	3.4911	0.0022	0.0038	HOMO-2 ->LUMO+1 (81)	HOMO ->LUMO+2 (86)
	(356.29)	(355.15)			HOMO-2 ->LUMO+3 (19)	HOMO ->LUMO+1 (14)
8	3.4900	3.5546	0.0024	0.0196	HOMO ->LUMO+3 (83)	HOMO ->LUMO+3 (100)
	(355.26)	(348.80)			HOMO ->LUMO+1 (17)	
9	3.5855	3.6101	0.0059	0.0013	HOMO-1 ->LUMO+2 (70)	HOMO-1 ->LUMO+2 (45)
	(345.79)	(343.43)			HOMO-1 ->LUMO+3 (16)	HOMO ->LUMO+4 (40)
					HOMO-2 ->LUMO+2 (14)	HOMO ->LUMO+5 (15)
10	3.6154	3.6194	0.0028	0.0018	HOMO ->LUMO+4 (60)	HOMO ->LUMO+4 (39)
	(342.93)	(342.55)			HOMO-1 ->LUMO+3 (29)	HOMO-1 ->LUMO+2 (36)
					HOMO ->LUMO+6 (11)	HOMO ->LUMO+5 (14)
						HOMO-1 ->LUMO+3 (11)

Table S2. Energy, oscillator strength and major contribution of calculated transition for 2.

A and B denote the results based on two geometries determined by X-ray crystallography (see Fig. 1 (b) and (c)).

Excited	Energy / e	eV (nm)	Oscillator	strength	Major contribution (%)	
state						
	А	В	А	В	А	В
1	2.8255	2.7742	0.0018	0.0014	HOMO->LUMO (100)	HOMO->LUMO (100)
	(438.81)	(446.91)				
2	2.9330	2.8958	0.0011	0.0015	HOMO-1 ->LUMO (100)	HOMO-1 ->LUMO (100)
	(422.72)	(428.16)				
3	3.0650	3.0184	0.0084	0.0075	HOMO-2 ->LUMO (100)	HOMO-2 ->LUMO (87)
	(404.51)	(410.76)				HOMO-1 ->LUMO (13)
4	3.1046	3.0622	0.0029	0.0031	HOMO ->LUMO+1 (80)	HOMO ->LUMO+1 (100)
	(399.36)	(404.89)			HOMO ->LUMO+3 (20)	
5	3.2156	3.1957	0.0055	0.0079	HOMO-1 ->LUMO+1 (81)	HOMO-1 ->LUMO+1 (100)
	(385.57)	(387.97)			HOMO-1 ->LUMO+3 (19)	
6	3.2899	3.3010	0.0030	0.0042	HOMO ->LUMO+2 (100)	HOMO ->LUMO+2 (84)
	(376.86)	(375.60)				HOMO-2 ->LUMO+1 (16)
7	3.3120	3.3065	0.0013	0.0008	HOMO ->LUMO+3 (80)	HOMO-2 ->LUMO+1 (83)
	(374.35)	(374.97)			HOMO ->LUMO+1 (20)	HOMO ->LUMO+2 (17)
8	3.3406	3.3649	0.0031	0.0114	HOMO-2 ->LUMO+1 (80)	HOMO ->LUMO+3 (100)
	(371.15)	(368.47)			HOMO-2 ->LUMO+3 (20)	
9	3.4103	3.4334	0.0055	0.0009	HOMO-1 ->LUMO+2 (78)	HOMO ->LUMO+4 (48)
	(363.56)	(361.12)			HOMO-1 ->LUMO+3 (22)	HOMO ->LUMO+5 (34)
						HOMO-1 ->LUMO+2 (18)
10	3.4408	3.4494	0.0034	0.0001	HOMO-1 ->LUMO+3 (64)	HOMO-1 ->LUMO+2 (66)
	(360.34)	(359.44)			HOMO-1 ->LUMO+2 (20)	HOMO ->LUMO+5 (34)
					HOMO-1 ->LUMO+1 (16)	

Table S3. Energy, oscillator strength and major contribution of calculated transition for **3**.

A and B denote the results based on two geometries determined by X-ray crystallography (see Fig. 1 (d) and (e)).

Fig. S6. ¹H NMR spectra (CDCl₃) of $\mathbf{1}$ (a), $\mathbf{2}$ (b) and $\mathbf{3}$ (c).