The solution chemistry and reactivity of lacunary Keggin silicotungstates monitored in real-time by a combination of mass spectrometry and electrochemistry

Qiaodi Jia, Jie Cao*, Yunpeng Duan and Changwen Hu*

Key Laboratory of Cluster Science, Ministry of Education of China; Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry, Beijing Institute of Technology, Beijing 100081, People's Republic of China

Figure S1. Real-time ESI-MS monitoring of the aqueous solutions containing (a) 1, (b) 2 and (c) 3, respectively, upon different standing time at constant pH at room temperature.

Figure S2. The simulated (red) and experimental (black) powder XRD pattern of compound **4**. Simulation based on the single crystal X-ray diffraction data.

Table 1. The main species and the relative abundances for the aqueous solutions 1, 2and 3 at different standing time identified by ESI-MS.

	SiW ₁₁ 1		SiW ₁₀ 2			SiW ₉ 3		
	Identification	Ions m/z (%)		Identification	Ions m/z (%)		Identification	Ions m/z (%)
0 h	$\begin{array}{l} [\mathrm{NaH_4SiW_{11}O_{39}}]^3 \\ [\mathrm{NaKH_3SiW_{11}O_{39}}]^3 \\ [\mathrm{NaH_3SiW_{11}O_{39}}]^4 \\ [\mathrm{KH_3SiW_{11}O_{39}}]^4 \\ [\mathrm{KH_3SiW_{11}O_{39}}]^4 \\ [\mathrm{NaK_2H_2SiW_{11}O_{39}}]^3 \end{array}$	900 (100) 913 (80) 675 (80) 679 (50) 926 (25)	0 h	$\begin{array}{l} [K_2H_3SiW_{10}O_{36}(H_2O)]^3 \\ [K_2H_3SiW_{10}O_{36}(H_2O)_2]^{3-} \\ [K_2H_3SiW_{10}O_{36}]^{3-} \\ [KH_4SiW_{10}O_{36}]^3 \\ [K_3H_5SiW_{10}O_{36}]^2 \\ [K_4H_2SiW_{10}O_{36}]^{2-} \end{array}$	847 (100) 853 (70) 841 (60) 829 (80) 1282 (10) 1301 (10)	0 h	$\begin{split} & [SiW_9O_{30}]^{2-} \\ & [NaSiW_9O_{31}]^{3-} \\ & [HSiW_9O_{31}]^{3-} \\ & [Na_2SiW_9O_{31}]^{2-} \\ & [NaHSiW_9O_{31}]^{2-} \\ & [KH_4SiW_9O_{33}]^{3-} \end{split}$	1082 (100) 734 (80) 727 (70) 1113 (60) 1102 (60) 751 (40)
12 h	$\label{eq:constraint} \begin{split} & [KH_3SiW_{11}O_{39}]^4 \\ & [NaKH_3SiW_{11}O_{39}]^3 \\ & [NaK_2H_2SiW_{11}O_{39}]^3 \\ & [NaH_4SiW_{11}O_{39}]^{3-} \end{split}$	679 (100) 913 (60) 926 (50) 900 (45)	12 h	$\begin{array}{c} [KH_{3}SiW_{11}O_{39}]^{4}\\ [KSiW_{10}O_{34}]^{3}\\ [HSiW_{10}O_{34}]^{3}\\ [K_{3}H_{3}SiW_{10}O_{36}]^{3}\\ [N_{3}K_{2}H_{2}SiW_{11}O_{39}]^{3}\\ [N_{3}KH_{3}SiW_{11}O_{39}]^{3}\\ [N_{4}KH_{3}SiW_{11}O_{39}]^{3}\\ [SiW_{10}O_{34}]^{4} \end{array}$	679 (100) 817 (50) 804 (45) 841 (40) 926 (40) 913 (35) 603 (20)	2 h	$[NaH_{4}SiW_{9}O_{33}]^{3} \\ [NaSiW_{9}O_{31}]^{3} \\ [KH_{4}SiW_{9}O_{33}]^{3} \\ [KH_{4}SiW_{1}O_{39}]^{3} \\ [NaKH_{5}SiW_{11}O_{39}]^{3} \\ [NaK_{4}H_{5}SiW_{11}O_{39}]^{3} \\ [NaK_{2}H_{5}SiW_{11}O_{39}]^{4} \\ [KH_{3}SiW_{11}O_{39}]^{4} \\ [KH_{3}SiW_{10}O_{36}]^{4} \\ [KH_{4}SiW_{10}O_{36}]^{3} \\ [K_{2}H_{3}SiW_{10}O_{36}(H_{2}O)_{2}]^{3} \\ [Na_{2}SiW_{9}O_{31}]^{2} \\ [Na_{4}SiW_{9}O_{32}]^{2} \\] \\ [Na_{4}SiW_{9}O_{32}]^{2} \\ [Na_{5}SiW_{9}O_{32}]^{2} \\ [Na_{5}SiW_{9}O_{3$	746 (100) 734 (90) 751 (90) 900 (90) 913 (70) 926 (50) 675 (70) 679 (60) 829 (40) 853 (40) 1113 (30) 1144 (30)
41 h	$\label{eq:constraint} \begin{split} & [KH_3SiW_{11}O_{39}]^4 \\ & [NaH_3SiW_{11}O_{39}]^4 \\ & [NaKH_3SiW_{11}O_{39}]^3 \\ & [NaH_4SiW_{11}O_{39}]^3 \\ & [NaK_2H_2SiW_{11}O_{39}]^3 \\ & [K_3H_3SiW_{11}O_{39}]^2 \end{split}$	679 (100) 675 (50) 913 (60) 900 (50) 926 (45) 1397 (10)	41 h	$\begin{array}{l} [NaKH_3SiW_{11}O_{39}]^3 \\ [NaH_4SiW_{11}O_{39}]^3 \\ [NaK_2H_2SiW_{11}O_{39}]^3 \\ [KH_4SiW_{10}O_{36}]^3 \\ [K_2H_3SiW_{10}O_{36}(H_2O)_2]^3 \\ [K_2H_3SiW_{10}O_{36}(H_2O)]^3 \\ [KH_3SiW_{11}O_{36}]^4 \\ [Na_4KHSiW_{11}O_{39}]^4 \end{array}$	913 (100) 900 (40) 926 (35) 829 (20) 853 (10) 847 (5) 679 (15) 1404 (5)	12 h	$\begin{array}{c} [KH_{3}SiW_{11}O_{39}]^{4} \\ [Na_{2}H_{3}SiW_{11}O_{39}]^{3} \\ [Na_{3}H_{2}SiW_{11}O_{39}]^{3} \\ [KNa_{3}HSiW_{11}O_{39}]^{3} \\ [KNa_{4}HSiW_{11}O_{39}]^{2} \\ [KNaH_{3}SiW_{10}O_{36}]^{3} \end{array}$	679 (100) 907 (40) 915 (35) 928 (20) 1404 (5) 897 (5)

Table 2. The main species and the relative abundances for the reaction mixtures 1, 2and 3 at different reaction time identified by ESI-MS.

Reaction	SiW ₁₁ +1 eq V reaction mixture 1		SiW ₁₀ + 2 eq reaction mixture	V e 2	SiW ₉ +3 eq V reaction mixture 3	
time	Identification	Ions m/z (%)	Identification	Ions m/z (%)	Identification	Ions m/z (%)
before	$\begin{array}{l} [NaH_{4}SiW_{11}O_{39}]^{3-} \\ [NaKH_{3}SiW_{11}O_{39}]^{3-} \\ [NaH_{3}SiW_{11}O_{39}]^{4-} \\ [KH_{3}SiW_{11}O_{39}]^{4-} \\ [NaK_{2}H_{2}SiW_{11}O_{39}]^{3-} \end{array}$	900 (100) 913 (80) 675 (80) 679 (50) 926 (25)	$\begin{array}{l} [K_2H_3SiW_{10}O_{36}(H_2O)]^{3-}\\ [K_2H_3SiW_{10}O_{36}(H_2O)_2]^{3-}\\ [K_2H_3SiW_{10}O_{36}]^{3-}\\ [KH_4SiW_{10}O_{36}]^{3-}\\ [K_3H_3SiW_{10}O_{36}]^{2-}\\ [K_4H_2SiW_{10}O_{36}]^{2-}\end{array}$	847 (100) 853 (70) 841 (60) 829 (80) 1282 (10) 1301 (10)	$\begin{split} & [SiW_9O_{30}]^{2-} \\ & [NaSiW_9O_{31}]^{3-} \\ & [HSiW_9O_{31}]^{3-} \\ & [Na_2SiW_9O_{31}]^{2-} \\ & [NaHSiW_9O_{31}]^{2-} \\ & [H_4KSiW_9O_{33}]^{3-} \end{split}$	1082(100)734(80)727(70)1113(60)1102(60)751(40)
0 h	[HSiVW ₁₁ O ₄₀] ⁴ - [SiVW ₁₁ O ₃₉] ³⁻	685 (100) 908 (10)	$\begin{array}{l} [H_2 S i V_2 W_{10} O_{40}]^4 \\ [S i V_2 W_{10} O_{39}]^4 \\ [Na S i V_2 W_{10} O_{39}]^{3-} \\ [K S i V_2 W_{10} O_{39}]^{3-} \end{array}$	652 (100) 648 (95) 872 (40) 877 (38)	$[HSiV_3W_9O_{39}]^4 \\ [SiV_3W_9O_{38}]^3 \\ [NaH_3SiV_3W_9O_{40}]^3 \\ [Na_3HSiV_3W_9O_{40}]^3 \\ [Na_4HSiV_3W_9O_{40}]^3 .$	615 (100) 815 (80) 834 (40) 849 (40) 1285 (12)
2 h	$\begin{split} & [SiV_2W_{10}O_{39}]^4 \\ & [HSiVW_{11}O_{40}]^4 \\ & [H_4NaSiW_{11}O_{39}]^{3-} \\ & [SiVW_{11}O_{39}]^{3-} \end{split}$	648 (100) 685 (50) 900 (50) 908 (30)	$[SiV_2W_{10}O_{39}]^{4-}$ $[KSiV_2W_{10}O_{39}]^{3-}$	648 (100) 877 (10)	$\begin{array}{l} [HSiV_3W_9O_{39}]^4\\ [SiV_3W_9O_{38}]^3\\ [NaH_3SiV_3W_9O_{40}]^3\\ [Na_3HSiV_3W_9O_{40}]^3\\ [Na_3HSiV_3W_9O_{40}]^3\\ [Na_4HSiV_3W_9O_{40}]^3 \end{array}$	615(100)815(80)834(40)849(40)1285(12)
24 h	$\begin{split} & [SiV_2W_{10}O_{39}]^{4-} \\ & [HSiVW_{11}O_{40}]^{4-} \\ & [HSiV_3W_9O_{39}]^{4-} \\ & [HSiV_2W_{10}O_{39}]^{3-} \\ & [SiVW_{11}O_{39}]^{3-} \\ & [SiV_3W_9O_{38}]^{3-} \end{split}$	648 (100) 685 (15) 615 (10) 865 (10) 908 (8) 815 (5)	$\begin{split} & [SiV_2W_{10}O_{39}]^4 - \\ & [HSiV_3W_9O_{39}]^4 - \\ & [HSiVW_{11}O_{40}]^4 - \\ & [HSiV_2W_{10}O_{39}]^3 - \\ & [SiV_3W_9O_{38}]^3 - \end{split}$	648 (100) 615 (20) 685 (15) 865 (40) 815 (20)	$\begin{array}{l} [\mathrm{HSiV_{3}W_{9}O_{39}}]^{4-}\\ [\mathrm{SiV_{3}W_{9}O_{38}}]^{3-}\\ [\mathrm{NaH_{3}SiV_{3}W_{9}O_{40}}]^{3-}\\ [\mathrm{Na_{3}HSiV_{3}W_{9}O_{40}}]^{3-}\\ [\mathrm{Na_{4}HSiV_{3}W_{9}O_{40}}]^{3-}\end{array}$	615(100)815(90)834(50)849(40)1285(12)