Synthesis, Structure and Photophysical Properties of Highly Luminescent Terpyridine–Diphenylacetylene Hybrid Fluorophore and its Metal Complexes

Biswa Nath Ghosh,^{*a,b*} Filip Topić,^{*a*} Prasit Kumar Sahoo,^{*c*} Prasenjit Mal,^{*,*c*} Jarno Linnera,^{*a*} Elina Kalenius,^{*a*} Heikki M. Tuononen^{*,*a*} and Kari Rissanen^{*,*a*}

^{*a*}Department of Chemistry, Nanoscience Center, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland.

^bDepartment of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur-768018, Odisha, India

^cSchool of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar; Institute of Physics Campus, P.O. Sainik School; Bhubaneswar, Odisha 751005, India.

* Corresponding authors:

Prasenjit Mal, Tel.: +91 674 2304073, E-mail: <u>pmal@niser.ac.in</u>, <u>http://www.niser.ac.in/~pmal/</u>

Heikki M. Tuononen, Tel.: +358 45 235 8588, E-mail: <u>heikki.m.tuononen@jyu.fi</u>, <u>https://www.jyu.fi/kemia/en/research/main-group-chemistry</u>

Kari Rissanen, Tel.: +358 50 562 3721, E-mail: <u>kari.t.rissanen@jyu.fi</u>, <u>https://www.jyu.fi/kemia/tutkimus/orgaaninen/staff/rissanen</u>

Table of Contents

- 1) **Fig. S1** ¹H NMR spectrum of L in CDCl₃ at 27 °C.
- 2) Fig. S2 13 C NMR spectrum of L in CDCl₃ at 27 °C.
- 3) Fig. S3 ¹H NMR spectrum of complex 1 in CD₃CN at 27 °C.
- 4) Fig. S4 ¹H NMR spectrum of complex 2 in CD₃CN at 27 $^{\circ}$ C.
- 5) Fig. S5 ¹H NMR spectrum of complex 3 in CD₃CN at 27 °C.
- 6) **Fig. S6** ¹H NMR spectrum of complex 4 in CD₃CN at 27 °C.
- 7) Fig. S7 Aromatic region in the ¹H NMR spectrum of complex 5 in CD_2Cl_2 at -60 °C.
- 8) Fig. S8 UV-Vis spectra of mono-terpyridine ligand L in different solvents.
- 9) Fig. S9 Fluorescence of L in solid state and in different solvents under UV lamp (365 nm).
- 10) Fig. S10 Emission spectra of complex 2 in different solvents.
- 11) Fig. S11 Emission spectra of complex 3 in different solvents.
- 12) Fig. S12 HOMO (left) and LUMO (right) of parent terpyridine ligand.
- 13) Fig. S13 HOMO (bottom) and LUMO (top) of methoxy substituted 1,2-diphenylacetylene.
- 14) Table S1 Selected optimized (PBE1PBE/def-TZVP) bond lengths (Å) and angles (°) for L
- 15) Ground state geometry for L (gas phase)
- 16) Ground state geometry for L (CH₃CN)
- 17) Ground state geometry for L (CH₂Cl₂)
- 18) Excited state geometry for L (gas phase)
- 19) Excited state geometry for L (CH₃CN)
- 20) Excited state geometry for L (CH₂Cl₂)
- 21) Excitation energies and oscillator strengths for L (gas phase)
- 22) Excitation energies and oscillator strengths for L (CH₃CN)
- 23) Excitation energies and oscillator strengths for L (CH₂Cl₂)
- 24) Excitation energies and oscillator strengths for 2 (CH₂Cl₂)

Fig. S1 ¹H NMR spectrum of L in CDCl₃ at 27 °C.

Fig. S2 ¹³C NMR spectrum of L in CDCl₃ 27 °C.

Fig. S3 ¹H NMR spectrum of complex 1 in CD₃CN at 27 $^{\circ}$ C.

Fig. S4 ¹H NMR spectrum of complex **2** in CD₃CN at 27 °C.

Fig. S5 ¹H NMR spectrum of complex 3 in CD₃CN at 27 °C.

Fig. S6 ¹H NMR spectrum of complex 4 in CD₃CN at 27 °C.

Fig. S7 Aromatic region in the ¹H NMR spectrum of complex **5** in CD_2Cl_2 at -60 °C.

Fig. S8 UV-Vis spectra of mono-terpyridine ligand L in different solvents.

Fig. S9 Fluorescence of L in solid state and in different solvents under UV lamp (365 nm).

Fig. S10 Emission spectra of complex 2 in different solvents.

Fig. S11 Emission spectra of complex 3 in different solvents.

Fig. S12 HOMO (left) and LUMO (right) of parent terpyridine ligand.

Fig. S13 HOMO (bottom) and LUMO (top) of methoxy substituted 1,2-diphenylacetylene.

Ligand L					
C2-N1	1.326	C7-N8	1.332	C13-N18	1.335
C6-N1	1.335	C9-N8	1.332	C17-N18	1.326
C6-C7	1.485	C9-C13	1.485	C11-C19	1.474
C22-C25	1.417	C25-C26	1.210	C26-C27	1.417
C2-C3	1.388	C4-C5	1.383	C7-C12	1.391
C3-C4	1.387	C5-C6	1.395	C9-C10	1.391
C10-C11	1.392	C30-O33	1.352	C34-O33	1.410
N1-C2-C3	123.6	N1-C6-C5	122.3	N1-C6-C7	116.9
N8-C7-C12	122.7	N8-C7-C6	117.1	N8-C9-C10	122.7
N8-C9-C13	117.1	N18-C13-C14	122.3	N18-C13-C9	116.9
N18-C17-C16	123.6	C2-N1-C6	118.3	C7-N8-C9	118.3
C17-N18-C13	118.3	C30-O33-C34	118.1	O33-C30-C31	124.5
O33-C30-C29	115.9	C26-C25-C22	179.9	C25-C26-C27	179.9

Table S1 Selected optimized (PBE1PBE/def-TZVP) bond lengths (Å) and angles (°) for L

Ground state geometry for L (gas phase)

С	4.071681	-1.123361	-0.053909
С	2.682003	-1.184321	-0.051356
С	1.945765	-0.003815	0.005279
С	2.656443	1.192646	0.052654
С	4.047121	1.162041	0.038085
Ν	4.742271	0.026846	-0.012070
н	2.207830	-2.154578	-0.114933
н	2.162061	2.152361	0.122320
С	4.821274	2.428734	0.090294
С	6.214887	2.411276	0.137109
Ν	4.121348	3.565811	0.091211
С	6.895190	3.614758	0.184145
Н	6.728983	1.459677	0.135647
С	4.786137	4.712654	0.137763
С	6.170494	4.797276	0.184939
Н	7.979096	3.630726	0.221273
Н	4.179887	5.614697	0.136984
Н	6.660481	5.762925	0.221564
С	4.872553	-2.372906	-0.115139
С	6.264832	-2.325368	-0.176833
Ν	4.197434	-3.524864	-0.108871
С	6.970498	-3.513861	-0.231389
Н	6.758315	-1.362922	-0.180605
С	4.886283	-4.657066	-0.162811
С	6.271626	-4.711778	-0.224734
Н	8.054041	-3.506329	-0.279979
Н	4.299665	-5.571966	-0.155761
Н	6.781932	-5.666624	-0.266735
С	0.471484	-0.020550	0.015210
С	-0.262778	1.001262	-0.591621
С	-0.230126	-1.059330	0.631916
С	-1.644001	0.987417	-0.587169
Н	0.257784	1.807793	-1.095656
С	-1.611123	-1.078456	0.645899
Н	0.316241	-1.853220	1.128683
С	-2.345163	-0.054158	0.033985
Н	-2.198270	1.782256	-1.072062
Н	-2.139817	-1.886286	1.137814
С	-3.761887	-0.072425	0.043039
С	-4.971568	-0.089851	0.050882
С	-6.388242	-0.117008	0.062914
С	-7.133579	0.913729	-0.513585

С	-7.082506	-1.183936	0.655851
С	-8.519524	0.891934	-0.505507
Н	-6.615289	1.745789	-0.975532
С	-8.458830	-1.212904	0.667857
Н	-6.521231	-1.992941	1.108202
С	-9.190985	-0.175238	0.087023
Н	-9.063111	1.708749	-0.962046
Н	-8.997746	-2.034834	1.124034
0	-10.536009	-0.294289	0.148412
С	-11.320757	0.725852	-0.427076
Н	-12.357328	0.434274	-0.267997
Н	-11.141444	1.692574	0.055953
Н	-11.134596	0.818181	-1.502637

Ground state geometry for L (CH₃CN)

С	-4.068291	-1.124875	0.054265
С	-2.678245	-1.185531	0.048653
С	-1.941916	-0.004508	-0.006330
С	-2.651368	1.193268	-0.050819
С	-4.042486	1.164604	-0.036889
Ν	-4.736005	0.027719	0.013306
Н	-2.198909	-2.153337	0.106867
Н	-2.150619	2.149710	-0.116123
С	-4.822283	2.429219	-0.088917
С	-6.215719	2.406507	-0.130017
Ν	-4.126770	3.570767	-0.094970
С	-6.902685	3.607649	-0.176301
Н	-6.732239	1.456154	-0.124659
С	-4.798057	4.716259	-0.140590
С	-6.183371	4.793339	-0.182030
Н	-7.986405	3.617928	-0.208676
Н	-4.198667	5.622424	-0.143714
Н	-6.677581	5.756501	-0.217930
С	-4.876080	-2.371294	0.116600
С	-6.268645	-2.317317	0.156101
Ν	-4.206156	-3.527962	0.132382
С	-6.982247	-3.502438	0.211852
Н	-6.763818	-1.355748	0.142091
С	-4.902801	-4.657811	0.186829
С	-6.289553	-4.703756	0.227924
Н	-8.065955	-3.488281	0.243069
Н	-4.323723	-5.577030	0.197834
Н	-6.805049	-5.655381	0.271393
С	-0.467015	-0.022073	-0.017674
С	0.267854	0.998987	0.591240
С	0.232618	-1.061041	-0.637805
С	1.649716	0.984354	0.585639
Н	-0.248232	1.806808	1.097469
С	1.614236	-1.081548	-0.653044
Н	-0.311592	-1.855351	-1.135908
С	2.348590	-0.057814	-0.038843
Н	2.202109	1.779390	1.072476
Н	2.138891	-1.890339	-1.147841
С	3.766402	-0.076989	-0.048579
С	4.977074	-0.094747	-0.056273
С	6.394593	-0.120891	-0.067032
С	7.137761	0.910829	0.514392

С	7.089493	-1.186716	-0.662739
С	8.523439	0.890887	0.508491
Н	6.620893	1.742589	0.978814
С	8.466575	-1.213250	-0.672168
Н	6.532765	-1.996764	-1.119246
С	9.197447	-0.175174	-0.086513
Н	9.065087	1.706971	0.968054
Н	9.002872	-2.035679	-1.131167
0	10.540278	-0.290568	-0.144617
С	11.327525	0.734728	0.437854
Н	12.363471	0.441940	0.281618
Н	11.147146	1.698482	-0.047119
Н	11.134489	0.822755	1.510947

С	-4.069019	-1.124540	0.054320
С	-2.679063	-1.185484	0.048825
С	-1.942533	-0.004733	-0.007004
С	-2.651994	1.192919	-0.052076
С	-4.043020	1.164268	-0.037361
Ν	-4.737045	0.027794	0.013303
Н	-2.200701	-2.153718	0.108126
Н	-2.152040	2.149697	-0.118679
С	-4.821589	2.429451	-0.089157
С	-6.215071	2.407856	-0.130408
Ν	-4.125169	3.570191	-0.094819
С	-6.900878	3.609432	-0.176821
Н	-6.731214	1.457324	-0.125075
С	-4.795319	4.715997	-0.140560
С	-6.180486	4.794493	-0.182423
Н	-7.984647	3.620782	-0.209442
Н	-4.194730	5.621432	-0.143511
Н	-6.673843	5.758142	-0.218536
С	-4.875810	-2.371383	0.116921
С	-6.268241	-2.318084	0.162511
Ν	-4.205337	-3.527537	0.127076
С	-6.980912	-3.503515	0.218720
Н	-6.762757	-1.356153	0.152734
С	-4.901042	-4.657587	0.182086
С	-6.287526	-4.704522	0.229214
Н	-8.064547	-3.490070	0.254771
Н	-4.321038	-5.576322	0.188509
Н	-6.802365	-5.656548	0.272948
С	-0.467750	-0.022373	-0.018490
С	0.267223	0.998756	0.589914
С	0.231929	-1.061426	-0.638171
С	1.648981	0.984081	0.584252
Н	-0.249427	1.806460	1.095827
С	1.613456	-1.081848	-0.653503
Н	-0.312842	-1.855673	-1.135835
С	2.347974	-0.058082	-0.039824
Н	2.201821	1.779052	1.070675
Н	2.138558	-1.890585	-1.147896
С	3.765657	-0.077217	-0.049625
С	4.976198	-0.094887	-0.057271
С	6.393636	-0.120701	-0.067714
С	7.136391	0.909020	0.517111
С	7.089182	-1.184268	-0.666446
С	8.522116	0.889287	0.511704

Н	6.618680	1.738938	0.983847
С	8.466173	-1.210654	-0.675505
Н	6.532344	-1.992712	-1.125593
С	9.196535	-0.174535	-0.086325
Н	9.063537	1.703945	0.974103
Н	9.003444	-2.031142	-1.136726
0	10.539758	-0.289739	-0.144287
С	11.325808	0.732786	0.442005
Н	12.362073	0.441163	0.285173
Н	11.145729	1.698799	-0.039060
Н	11.132711	0.816921	1.515628

Excited state geometry for L (gas phase)

С	4.073659	-1.120718	-0.022371
С	2.692178	-1.192581	-0.012653
С	1.923371	-0.010639	0.008583
С	2.652085	1.196500	0.022058
С	4.035260	1.171209	0.016552
Ν	4.755061	0.037044	-0.006866
н	2.248225	-2.177405	-0.048500
н	2.175411	2.165704	0.063082
С	4.792094	2.443416	0.040321
С	6.189733	2.434148	0.041690
Ν	4.091080	3.583457	0.059270
С	6.867251	3.639343	0.063471
Н	6.702540	1.482073	0.025995
С	4.754920	4.730078	0.080631
С	6.141157	4.821355	0.083579
Н	7.952125	3.657644	0.064952
Н	4.146930	5.631561	0.096014
Н	6.628767	5.788827	0.101324
С	4.872546	-2.366777	-0.054935
С	6.268895	-2.310789	-0.072500
Ν	4.209983	-3.529665	-0.066059
С	6.986160	-3.492613	-0.102502
Н	6.749818	-1.342146	-0.062497
С	4.911498	-4.653431	-0.095440
С	6.299964	-4.698287	-0.114548
Н	8.070945	-3.474460	-0.116572
Н	4.333812	-5.574704	-0.103992
Н	6.819436	-5.648901	-0.138261
С	0.478971	-0.034834	0.015503
С	-0.286482	1.139717	-0.224592
С	-0.244384	-1.234371	0.262199
С	-1.652902	1.121908	-0.221899
Н	0.221546	2.071375	-0.436754
С	-1.610614	-1.263054	0.270443
Н	0.296487	-2.148246	0.470216
С	-2.365546	-0.083036	0.026982
Н	-2.211562	2.030175	-0.416925
Н	-2.136564	-2.189686	0.469880
С	-3.750791	-0.106229	0.031310
С	-4.980999	-0.125740	0.034172
С	-6.365951	-0.147967	0.034760
С	-7.116011	1.026838	-0.226714

С	-7.081603	-1.348800	0.296177
С	-8.490754	1.009771	-0.229143
Н	-6.585744	1.949793	-0.427427
С	-8.448621	-1.364605	0.292703
Н	-6.524622	-2.255426	0.498381
С	-9.173846	-0.187958	0.030259
Н	-9.032828	1.923906	-0.432557
Н	-9.001772	-2.275064	0.490010
0	-10.505520	-0.311386	0.049568
С	-11.306565	0.827893	-0.205930
Н	-12.337134	0.486658	-0.140219
Н	-11.133791	1.608342	0.541335
Н	-11.118791	1.226751	-1.207423

Excited state geometry for L (CH_3CN)

С	0.000000	0.000000	0.000000
С	0.000000	0.000000	1.382408
С	1.220678	0.000000	2.099407
С	2.387868	0.000170	1.298409
С	2.290781	0.000788	-0.080594
Ν	1.120703	0.000134	-0.741868
Н	-0.959667	0.007978	1.878425
Н	3.379780	-0.008258	1.726096
С	3.521417	-0.006453	-0.912046
С	3.435577	-0.086413	-2.303523
Ν	4.698877	0.064112	-0.278736
С	4.601506	-0.089975	-3.050034
Н	2.460569	-0.144034	-2.768216
С	5.809193	0.058375	-1.007161
С	5.821254	-0.016116	-2.393889
Н	4.558782	-0.151284	-4.131990
Н	6.743464	0.117379	-0.455010
Н	6.759375	-0.015757	-2.935406
С	-1.285884	0.005634	-0.743089
С	-1.297301	0.048593	-2.138732
Ν	-2.416641	-0.030805	-0.027206
С	-2.512799	0.051514	-2.801534
Н	-0.356704	0.078962	-2.671949
С	-3.575354	-0.026629	-0.675877
С	-3.684190	0.013077	-2.059879
Н	-2.545504	0.084298	-3.885077
Н	-4.469071	-0.057217	-0.058168
Н	-4.658089	0.013710	-2.534049
С	1.271413	-0.000713	3.535368
С	2.507289	0.086637	4.244637
С	0.088380	-0.088999	4.329331
С	2.562770	0.086942	5.606943
Н	3.437389	0.164421	3.696924
С	0.128489	-0.091405	5.692121
Н	-0.877732	-0.166152	3.847987
С	1.371711	-0.002973	6.391942
Н	3.518568	0.159086	6.112999
Н	-0.789487	-0.164561	6.263795
С	1.419372	-0.005288	7.766481
С	1.460840	-0.008166	9.000170
С	1.503041	-0.013327	10.378018
С	2.741029	0.071805	11.074182

С	0.306486	-0.104849	11.148296
С	2.786973	0.065381	12.445186
Н	3.659238	0.142527	10.504031
С	0.355346	-0.110563	12.512418
Н	-0.645194	-0.170347	10.635494
С	1.593188	-0.026491	13.183152
Н	3.743416	0.131244	12.946399
Н	-0.548904	-0.180290	13.105147
0	1.531753	-0.041298	14.512157
С	2.736756	0.035997	15.267625
Н	2.431965	0.006508	16.310325
Н	3.386464	-0.814877	15.050042
Н	3.263181	0.971442	15.064598

С	0.000000	0.000000	0.000000
С	0.000000	0.000000	1.382408
С	1.220678	0.000000	2.099407
С	2.387868	0.000170	1.298409
С	2.290781	0.000788	-0.080594
Ν	1.120703	0.000134	-0.741868
Н	-0.959667	0.007978	1.878425
Н	3.379780	-0.008258	1.726096
С	3.521417	-0.006453	-0.912046
С	3.435577	-0.086413	-2.303523
Ν	4.698877	0.064112	-0.278736
С	4.601506	-0.089975	-3.050034
Н	2.460569	-0.144034	-2.768216
С	5.809193	0.058375	-1.007161
С	5.821254	-0.016116	-2.393889
Н	4.558782	-0.151284	-4.131990
Н	6.743464	0.117379	-0.455010
Н	6.759375	-0.015757	-2.935406
С	-1.285884	0.005634	-0.743089
С	-1.297301	0.048593	-2.138732
Ν	-2.416641	-0.030805	-0.027206
С	-2.512799	0.051514	-2.801534
Н	-0.356704	0.078962	-2.671949
С	-3.575354	-0.026629	-0.675877
С	-3.684190	0.013077	-2.059879
Н	-2.545504	0.084298	-3.885077
Н	-4.469071	-0.057217	-0.058168
Н	-4.658089	0.013710	-2.534049
С	1.271413	-0.000713	3.535368
С	2.507289	0.086637	4.244637
С	0.088380	-0.088999	4.329331
С	2.562770	0.086942	5.606943
Н	3.437389	0.164421	3.696924
С	0.128489	-0.091405	5.692121
Н	-0.877732	-0.166152	3.847987
С	1.371711	-0.002973	6.391942
Н	3.518568	0.159086	6.112999
Н	-0.789487	-0.164561	6.263795
С	1.419372	-0.005288	7.766481
С	1.460840	-0.008166	9.000170
С	1.503041	-0.013327	10.378018
С	2.741029	0.071805	11.074182
С	0.306486	-0.104849	11.148296
С	2.786973	0.065381	12.445186

Н	3.659238	0.142527	10.504031
С	0.355346	-0.110563	12.512418
Н	-0.645194	-0.170347	10.635494
С	1.593188	-0.026491	13.183152
Н	3.743416	0.131244	12.946399
Н	-0.548904	-0.180290	13.105147
0	1.531753	-0.041298	14.512157
С	2.736756	0.035997	15.267625
Н	2.431965	0.006508	16.310325
Н	3.386464	-0.814877	15.050042
Н	3.263181	0.971442	15.064598

Excited State 115 ->116	1: Singlet-A 0.69654	3.5746 eV	346.85 nm	f=1.3193	<s**2>=0.000</s**2>
Excited State 113 ->117 114 ->116 115 ->117	2: Singlet-A 0.11798 -0.18847 0.66690	3.7969 eV	326.54 nm	f=0.0021	<s**2>=0.000</s**2>
Excited State 113 ->117 114 ->116 115 ->117	3: Singlet-A -0.10518 0.64634 0.21230	4.1398 eV	299.49 nm	f=0.1688	<s**2>=0.000</s**2>
Excited State 106 ->116 110 ->117 112 ->116 112 ->118	4: Singlet-A 0.13890 -0.17766 0.60714 -0.24415	4.2778 eV	289.83 nm	f=0.0029	<s**2>=0.000</s**2>
Excited State 114 ->117 115 ->118	5: Singlet-A -0.20451 0.65880	4.2828 eV	289.49 nm	f=0.5576	<\$**2>=0.000
Excited State 110 ->116 110 ->118 112 ->117	6: Singlet-A -0.18733 0.17507 0.63014	4.3648 eV	284.06 nm	f=0.0029	<s**2>=0.000</s**2>
Excited State 114 ->117 114 ->120 115 ->118	7: Singlet-A 0.64494 -0.11194 0.20725	4.5224 eV	274.16 nm	f=0.0539	<s**2>=0.000</s**2>
Excited State 109 ->116 110 ->117 112 ->118 113 ->122 115 ->121 115 ->122	8: Singlet-A 0.38220 0.21020 0.10108 0.10811 0.21043 0.43945	4.5754 eV	270.98 nm	f=0.0011	<s**2>=0.000</s**2>
Excited State 108 ->116 108 ->118 108 ->123 110 ->117	9: Singlet-A -0.18448 -0.14461 -0.10564 -0.19664	4.6128 eV 2	268.78 nm	f=0.0122	<s**2>=0.000</s**2>

Excitation energies and oscillator strengths for L (gas phase)

115 ->121	0.56700	
115 ->122	-0.12742	
Excited State	10: Singlet-A	4.6244 eV 268.11 nm f=0.0031 <s**2>=0.000</s**2>
106 ->116	0.21646	
106 ->118	-0.13811	
109 ->116	-0.17151	
110 ->117	0.46010	
111 ->117	0.14513	
112 ->116	0.12568	
112 ->119	0.15714	
115 ->121	0.14647	
115 ->122	-0.25476	

3.4863 eV 355.63 nm f=1.4913 <S**2>=0.000 Excited State 1: Singlet-A 115 ->116 0.69368 Excited State 2: Singlet-A 3.8089 eV 325.51 nm f=0.0049 <S**2>=0.000 113 ->117 0.12161 114 ->116 0.21303 115 ->117 0.65829 Excited State 3: Singlet-A 4.0855 eV 303.48 nm f=0.2165 <S**2>=0.000 0.64388 114 ->116 114 ->118 0.11218 115 ->117 -0.23546 Excited State 4: Singlet-A 4.2768 eV 289.90 nm f=0.5265 <S**2>=0.000 114 ->117 -0.19866 115 ->116 0.10080 115 ->118 0.65814 Excited State 5: Singlet-A 4.2830 eV 289.48 nm f=0.0029 <S**2>=0.000 106 ->116 0.15454 110 ->117 0.15988 112 ->116 0.61178 112 ->118 0.23956 Excited State 6: Singlet-A 4.3902 eV 282.41 nm f=0.0008 <S**2>=0.000 110 ->116 0.18974 110 ->118 0.16984 112 ->117 0.63158 Excited State 7: Singlet-A 4.4752 eV 277.05 nm f=0.0878 <S**2>=0.000 114 ->117 0.65591 115 ->118 0.20420 Excited State 8: Singlet-A 4.5742 eV 271.05 nm f=0.0003 <S**2>=0.000 108 ->116 0.41146 110 ->117 -0.13730 113 ->121 0.11052 115 ->121 0.48783 Singlet-A 4.6414 eV 267.13 nm f=0.0101 <S**2>=0.000 Excited State 9: 106 ->116 0.12815 109 ->116 -0.18550 109 ->118 0.13277 110 ->117 -0.29868 115 ->121 -0.19295 115 ->122 0.47064

Excitation energies and oscillator strengths for L (CH₃CN)

Excited State	10:	Singlet-A
106 ->116	-0.2	20012
106 ->118	-0.1	L2800
108 ->116	0.1	1622
109 ->116	-0.1	L0730
109 ->117	-0.1	13027
110 ->117	0.4	4322
112 ->116	-0.1	L0428
112 ->119	-0.1	L4130
115 ->122	0.3	84795

A 4.6461 eV 266.86 nm f=0.0082 <S**2>=0.000

Excitation energies and oscillator strengths for L (CH₂Cl₂)

Excited State 115 ->116	1: Singlet-A 0.69292	3.4798 eV 356.30 nm f=1.5191 <s**2>=0.000</s**2>
Excited State 113 ->117 114 ->116 115 ->117	2: Singlet-A 0.12093 0.20966 0.65955	3.8065 eV 325.72 nm f=0.0048 <s**2>=0.000</s**2>
Excited State 114 ->116 114 ->118 115 ->117	3: Singlet-A 0.64492 0.11557 -0.23180	4.0857 eV 303.46 nm f=0.2309 <s**2>=0.000</s**2>
Excited State 114 ->117 115 ->116 115 ->118	4: Singlet-A -0.19146 0.10590 0.65960	4.2688 eV 290.44 nm f=0.5146 <s**2>=0.000</s**2>
Excited State 106 ->116 110 ->117 112 ->116 112 ->118	5: Singlet-A 0.15256 0.16750 0.61118 0.24021	4.2820 eV 289.54 nm f=0.0030 <s**2>=0.000</s**2>
Excited State 110 ->116 110 ->118 112 ->117	6: Singlet-A 0.19519 0.17621 0.63104	4.3863 eV 282.66 nm f=0.0005 <s**2>=0.000</s**2>
Excited State 114 ->117 115 ->118	7: Singlet-A 0.65808 0.19715	4.4650 eV 277.68 nm f=0.0973 <s**2>=0.000</s**2>
Excited State 108 ->116 109 ->116 110 ->117 113 ->121 115 ->121 115 ->122	8: Singlet-A 0.33799 0.23815 -0.15024 0.10061 0.47094 0.15918	4.5742 eV 271.05 nm f=0.0005 <s**2>=0.000</s**2>
Excited State 108 ->116 109 ->116 109 ->118 110 ->117	9: Singlet-A 0.12145 -0.16270 0.13166 -0.22995	4.6354 eV 267.47 nm f=0.0143 <s**2>=0.000</s**2>

-0.26228	
0.49269	
10: Singlet-A	4.6418 eV 267.10 nm f=0.0058 <s**2>=0.000</s**2>
-0.21769	
-0.14014	
0.14004	
0.49704	
-0.11709	
-0.15543	
0.27763	
	-0.26228 0.49269 10: Singlet-A -0.21769 -0.14014 0.14004 0.49704 -0.11709 -0.15543 0.27763

Excitation energies and oscillator strengths for $2 (CH_2Cl_2)$

Excitation energies and oscillator strengths:

Excited State 294 -> 295 294 -> 296	1: Singlet-A -0.23695 0.65252	3.1036 eV 399.49 nm f=0.6478 <s**2>=0.000</s**2>
Excited State 294 -> 295 294 -> 296	2: Singlet-A 0.66372 0.23675	3.2633 eV 379.94 nm f=0.0100 <s**2>=0.000</s**2>
Excited State 293 -> 295 293 -> 296	3: Singlet-A -0.67189 -0.15126	3.2841 eV 377.52 nm f=0.0800 <s**2>=0.000</s**2>
Excited State 291 -> 298 294 -> 297 294 -> 298	4: Singlet-A 0.10382 -0.39183 0.56331	3.5382 eV 350.42 nm f=0.0463 <s**2>=0.000</s**2>
Excited State 293 -> 295 293 -> 296	5: Singlet-A 0.15756 -0.68721	3.5853 eV 345.81 nm f=0.0000 <s**2>=0.000</s**2>
Excited State 292 -> 295 292 -> 296	6: Singlet-A 0.68022 0.14806	3.6425 eV 340.38 nm f=1.0065 <s**2>=0.000</s**2>
Excited State 294 -> 297 294 -> 298	7: Singlet-A 0.58223 0.39731	3.6974 eV 335.33 nm f=0.0009 <s**2>=0.000</s**2>
Excited State 289 -> 295 292 -> 297 292 -> 298 293 -> 297 293 -> 298	8: Singlet-A -0.42420 0.27545 0.13889 -0.38968 -0.16685	3.7875 eV 327.35 nm f=0.0887 <s**2>=0.000</s**2>
Excited State 289 -> 295 292 -> 297 293 -> 297 293 -> 298	9: Singlet-A -0.38685 0.10164 0.51649 0.18485	3.8668 eV 320.64 nm f=0.0865 <s**2>=0.000</s**2>
Excited State 288 -> 295	10: Singlet-A 0.14041	3.9071 eV 317.33 nm f=0.2500 <s**2>=0.000</s**2>

288 -> 296 290 -> 295 290 -> 296 201 > 205	-0.38524 -0.11470 0.32876 0.11785	
291 -> 295	-0.36084	
Excited State 292 -> 295 292 -> 296	11: Singlet-A -0.15316 0.67940	3.9275 eV 315.68 nm f=0.0165 <s**2>=0.000</s**2>
Excited State 288 -> 296 290 -> 296 291 -> 295 291 -> 296	12: Singlet-A -0.25267 0.22299 -0.18919 0.53646	3.9470 eV 314.12 nm f=0.3253 <s**2>=0.000</s**2>
Excited State 293 -> 297 293 -> 298	13: Singlet-A 0.25664 -0.65535	3.9954 eV 310.31 nm f=0.0007 <s**2>=0.000</s**2>
Excited State 286 -> 295 288 -> 295 289 -> 295 290 -> 295 290 -> 296 292 -> 297 292 -> 298	14: Singlet-A 0.27087 0.16346 0.28063 -0.12461 -0.15328 0.43875 0.20008	4.0684 eV 304.75 nm f=0.0876 <s**2>=0.000</s**2>
Excited State 285 -> 296 288 -> 295 288 -> 296 290 -> 295 290 -> 296	15: Singlet-A 0.11175 -0.10100 0.40836 -0.22330 0.47780	4.0712 eV 304.54 nm f=0.0121 <s**2>=0.000</s**2>
Excited State 288 -> 295 288 -> 296 289 -> 295 290 -> 295 290 -> 296 291 -> 295 291 -> 296 291 -> 296 292 -> 297	16: Singlet-A -0.39268 -0.12008 0.21026 0.33099 0.14669 -0.30488 -0.10431 0.16420	4.0856 eV 303.47 nm f=0.0080 <s**2>=0.000</s**2>
Excited State 285 -> 295	17: Singlet-A 0.16189	4.1254 eV 300.54 nm f=0.0651 <s**2>=0.000</s**2>

286 -> 295	-0.49717	
287 -> 295	0.27962	
291 -> 295	0.15458	
292 -> 297	0.25554	
292 -> 298	0.11041	
Excited State	18: Singlet-A	4.1312 eV 300.12 nm f=0.6567 <s**2>=0.000</s**2>
294 -> 299	0.38304	
294 -> 300	0.39003	
294 -> 301	-0.26953	
294 -> 302	-0.26405	
Excited State	19: Singlet-A	4.1480 eV 298.90 nm f=0.0106 <s**2>=0.000</s**2>
288 -> 295	0.20298	
290 -> 295	-0.23939	
291 -> 295	-0.55842	
291 -> 296	-0.19291	
Excited State	20: Singlet-A	4.1542 eV 298.46 nm f=0.0035 <s**2>=0.000</s**2>
286 -> 296	-0.11277	
287 -> 295	0.10280	
289 -> 295	-0.11964	
289 -> 296	0.64132	
290 -> 296	-0.12095	