Electronic Supplementary Information

Characterization of the Interactions between Substrate, Cu^{II} complex and DNA and their Role in Rate Accelerations in DNA-based Asymmetric Catalysis

Apparao Draksharapu, Arnold J. Boersma, Wesley R. Browne and Gerard Roelfes

Contents

Electronic Supplementary Information	1
Characterization of the Interactions between Substrate, Cu ^{II} complex and DNA and their Role in Rate Accelerations in DNA-based Asymmetric Catalysis	1
1. Characterization of (Aza) ₂ -Cu ^{II} complex	2
2. Comparison between Aza-Cu ^{II} dmbpy and (Aza) ₂ -Cu ^{II} complexes	3
3. Comparison between solid and solution state structure of (Aza) ₂ -Cu ^{II}	4
4. Cu ^{II} dmbpy/Cu ^{II} d ₁₂ -dmbpy and Aza in the presence and absence of st-DNA	5
5. Cu ^{II} dmbpy/Cu ^{II} d ₁₂ -dmbpy and Aza in the presence and absence of st-DNA	6
6. Cu ^{II} bpy and Aza in the presence and absence of st-DNA	7
7. Cu ^{II} phen and Aza in the presence and absence of st-DNA	9
8. Cu ^{II} terpy and Aza in the presence and absence of st-DNA1	1
9. RR spectra (λ_{exc} 473 nm)Copper(II) complexes with Aza in the presence and absence of st-DNA1	3
10. EPR spectral data1	4

1. Characterization of (Aza)₂-Cu^{II} complex

Fig. S 1 Solid state FTIR and Raman (at λ_{exc} 785 nm) (inset: UV/Vis absorption in water with 1 vol% of CH₃CN at 15 μ M) spectra of Aza (black) and (Aza)₂-Cu^{II} (red).

2. Comparison between Aza-Cu^{II}dmbpy and $(Aza)_2$ -Cu^{II} complexes

Fig. S 2 Solid state Raman spectra of $(Aza)_2-Cu^{II}$ at λ_{exc} 785 nm (bottom), Aza-Cu^{II}dmbpy dispersed in KCl at λ_{exc} 473 nm (top). Centre: A scaled subtraction of the spectrum of lower spectrum from the upper spectrum.

Fig. S 3 Raman spectra of $(Aza)_2$ -Cu^{II} in solid state (black) and in acetonitrile/water (1:1 v/v, red) at λ_{exc} 785 nm.

Fig. S 4 Resonance Raman spectra at λ_{exc} 355 nm of Aza in the absence (black) and presence (red) of st-DNA. Conditions: st-DNA (1.3 mg/mL) and Aza (20 μ M) in 20 mM MOPS buffer (pH 6.5). Raman Spectra were solvent subtracted followed by a multipoint baseline correction. *SO₄²⁻ internal standard (50 mM). Inset: UV/Vis absorption spectra of solutions used to record Raman spectra.

3. Comparison between solid and solution state structure of $(Aza)_2$ -Cu^{II}

4. Cu^{II}dmbpy/Cu^{II}d₁₂-dmbpy and Aza in the presence and absence of st-DNA

5. Cu^{II}dmbpy/Cu^{II}d₁₂-dmbpy and Aza in the presence and absence of st-DNA

Fig. S 6 Resonance Raman spectra at λ_{exc} 473 nm of (top) **Cu^{II}dmbpy** or (bottom) **Cu^{II}d₁₂-dmbpy** (0.3 mM) and **Aza** (4 μ M) with st-DNA 1.33 mg/mL st-DNA in 20 mM MOPS. Centre: A scaled subtraction of the spectrum of lower spectrum from the upper spectrum showing dmbpy modes as positive signals and d₁₂-dmbpy modes as negative signals.

6. Cullbpy and Aza in the presence and absence of st-DNA

Fig. S 7 Resonance Raman spectra of Aza and Cu^{II}bpy in the absence and presence of st-DNA at λ_{exc} 355 nm. 20 μ M Aza, 0.3 mM Cu^{II}bpy, 1.33 mg/mL st-DNA in 20 mM MOPS. * SO₄²⁻ as an internal standard (50 mM). Inset: UV/Vis absorption spectra of solutions used to record Raman spectra.

Fig. S 8 Resonance Raman spectra of Aza and Cu^{II}bpy in the absence and presence of st-DNA at λ_{exc} 473 nm. 20 μ M Aza, 0.3 mM Cu^{II}bpy, 1.33 mg/mL st-DNA in 20 mM MOPS. * SO₄²⁻ as an internal standard (50 mM). Inset: UV/Vis absorption spectra of solutions used to record Raman spectra.

7. Cullphen and Aza in the presence and absence of st-DNA

Fig. S 9 Resonance Raman spectra of Aza and Cu^{II}phen in the absence and presence of st-DNA at λ_{exc} 355 nm. 20 μ M Aza, 0.3 mM Cu^{II}phen, 1.33 mg/mL st-DNA in 20 mM MOPS. * SO₄²⁻ as an internal standard (50 mM), # acetonitrile. Inset: UV/Vis absorption spectra of solutions used to record Raman spectra.

Fig. S 10 Resonance Raman spectra of Aza and Cu^{II}phen in the absence and presence of st-DNA at λ_{exc} 473 nm. 20 μ M Aza, 0.3 mM Cu^{II}phen, 1.33 mg/mL st-DNA in 20 mM MOPS. * SO₄²⁻ as an internal standard (50 mM), # acetonitrile. Inset: UV/Vis absorption spectra of solutions used to record Raman spectra.

8. Cull terpy and Aza in the presence and absence of st-DNA

Fig. S 11 Resonance Raman spectra of Aza and Cu^{II}terpy in the absence and presence of st-DNA at λ_{exc} 355 nm. 20 μ M Aza, 0.3 mM Cu^{II}terpy, 1.33 mg/mL st-DNA in 20 mM MOPS. * SO₄²⁻ as an internal standard (50 mM). Inset: UV/Vis absorption spectra of solutions used to record Raman spectra.

9. RR spectra (λ_{exc} 473 nm)Copper(II) complexes with Aza in the presence and absence of st-DNA

Fig. S 13 Resonance Raman spectra of st-DNA/Cu complex/Aza at λ_{exc} 473 nm. Cu^{II}dmbpy, Cu^{II}phen and Cu^{II}terpy (0.3 mM), Aza (20 μ M) and st-DNA (1.33 mg/mL) in 20 mM MOPS buffer. * internal standard SO₄²⁻ (50 mM). Inset: UV/Vis absorption spectra of solutions used to record Raman spectra.

10. EPR spectral data

Complex	g	g_{\perp}	A_{\parallel}	A_{\perp}	$g_{\parallel}/A_{\parallel}$			
In buffer								
Си ^п dmbpy	2.31	2.07	158	15	146			
st-DNA/Cu ^{II} dmbpy	2.30	2.07	160	-	144			
st-DNA/Cu ^{II} dmbpy /aza	2.27	2.07	174	-	130			
	In buffer : ethand	ol 1:2						
Си ^п dmbpy	2.32	2.07	154	14	151			
Cu ^{II} dmbpy/aza ^a	2.29	2.07	161	14	142			
Cu ^{II} dmbpy/aza ^b	2.27	2.07	170	14	134			

Table S1 EPR parameters Cu^{II}dmbpy obtained from fitting to spectral data

^a Fig. S14 spectra b – e, ^b Fig S14.spectrum f.

Fig. S 14 EPR (9.46 GHz) spectra at 77 K of $Cu^{II}dmbpy$ (0.3 mM) in EtOH:MOPS buffer (20 mM) 2:1 v/v, pH 6.5) with Aza a) 0.0 mM b) 0.3 mM, c) 0.6 mM, d) 1 mM, e) 2 mM and f) 6 mM. Inset expansion of spectrum f. Conditions: microwave power 20 mW; field modulation amplitude 10 G; time constant 81.92 ms; average of 3 scans.

Fig. S 15 EPR (9.46 GHz) spectra at 77 K of (a) Cu^{II} dmbpy (0.3 mM in MOPS (20 mM) pH 6.5, 1.8 vol% DMSO) and (b) with st-DNA (1.4 mg/mL) and 0.0 mM, (c) 0.3 mM, (d) 0.6 mM, (e) 1 mM and (f) 2 mM of Aza. Conditions: microwave power 20 mW; field modulation amplitude 10 G; time constant 81.92 ms; average of 3 scans.

Table S 2 EPR	parameters	Cu ¹¹ terpy	obtained f	rom fitting	to spectral da	ıta.
---------------	------------	------------------------	------------	-------------	----------------	------

Complex	g_{\parallel}	\mathbf{g}_{\perp}	A_{\parallel}	$g_{\parallel}/A_{\parallel}$
	In buffer			
Cu ⁿ terpy	2.27	2.07	166	137
st-DNA/ Cu ^{II} terpy	2.27	2.07	166	137
st-DNA/ Cu ^{II} terpy/aza	2.26	2.07	167	135
	In buffer : ethanol 1.	:2		
Cu ⁿ terpy	2.27	2.07	160	142
Cu ^{II} terpy/aza ^a	2.25	2.07	160	141
Cu ^{II} terpy/aza ^b	2.25	2.07	161	140

^a Fig. S16 spectrum b, ^b spectrum Fig. S16 c - f.

Fig. S 16 EPR (9.46 GHz) spectra at 77 K of **Cu^Hterpy** (0.3 mM in EtOH:MOPS (20 mM) 2:1 v/v, pH 6.5) with **Aza** a) 0.0 mM b) 0.3 mM, c) 0.6 mM, d) 1 mM, e) 2 mM and f) 6 mM. Conditions: microwave power 20 mW; field modulation amplitude 10 G; time constant 81.92 ms; average of 3 scans.

Fig. S 17 EPR (9.46 GHz) spectra at 77 K of (a) Cu^{II}terpy (0.3 mM in MOPS (20 mM) pH 6.5, 1.8 vol% DMSO) and (b) with st-DNA (2.0 mg/mL) and (c) 0.3 mM, (d) 0.6 mM, (e) 1 mM and (f) 2 mM of Aza. Conditions: microwave power 20 mW; field modulation amplitude 10 G; time constant 81.92 ms; average of 3 scans.